-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathtpd.scala
1623 lines (1386 loc) · 67.7 KB
/
tpd.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package dotty.tools
package dotc
package ast
import dotty.tools.dotc.transform.{ExplicitOuter, Erasure}
import typer.ProtoTypes
import core.*
import Scopes.newScope
import util.Spans.*, Types.*, Contexts.*, Constants.*, Names.*, Flags.*, NameOps.*
import Symbols.*, StdNames.*, Annotations.*, Trees.*, Symbols.*
import Decorators.*, DenotTransformers.*
import collection.{immutable, mutable}
import util.{Property, SourceFile}
import NameKinds.{TempResultName, OuterSelectName}
import typer.ConstFold
import scala.annotation.tailrec
import scala.collection.mutable.ListBuffer
import scala.compiletime.uninitialized
/** Some creators for typed trees */
object tpd extends Trees.Instance[Type] with TypedTreeInfo {
private def ta(using Context) = ctx.typeAssigner
def Ident(tp: NamedType)(using Context): Ident =
ta.assignType(untpd.Ident(tp.name), tp)
def Select(qualifier: Tree, name: Name)(using Context): Select =
ta.assignType(untpd.Select(qualifier, name), qualifier)
def Select(qualifier: Tree, tp: NamedType)(using Context): Select =
untpd.Select(qualifier, tp.name).withType(tp)
def This(cls: ClassSymbol)(using Context): This =
untpd.This(untpd.Ident(cls.name)).withType(cls.thisType)
def Super(qual: Tree, mix: untpd.Ident, mixinClass: Symbol)(using Context): Super =
ta.assignType(untpd.Super(qual, mix), qual, mixinClass)
def Super(qual: Tree, mixName: TypeName, mixinClass: Symbol = NoSymbol)(using Context): Super =
Super(qual, if (mixName.isEmpty) untpd.EmptyTypeIdent else untpd.Ident(mixName), mixinClass)
def Apply(fn: Tree, args: List[Tree])(using Context): Apply = fn match
case Block(Nil, expr) =>
Apply(expr, args)
case _: RefTree | _: GenericApply | _: Inlined | _: Hole =>
ta.assignType(untpd.Apply(fn, args), fn, args)
case _ =>
assert(ctx.reporter.errorsReported)
ta.assignType(untpd.Apply(fn, args), fn, args)
def TypeApply(fn: Tree, args: List[Tree])(using Context): TypeApply = fn match
case Block(Nil, expr) =>
TypeApply(expr, args)
case _: RefTree | _: GenericApply =>
ta.assignType(untpd.TypeApply(fn, args), fn, args)
case _ =>
assert(ctx.reporter.errorsReported, s"unexpected tree for type application: $fn")
ta.assignType(untpd.TypeApply(fn, args), fn, args)
def Literal(const: Constant)(using Context): Literal =
ta.assignType(untpd.Literal(const))
def unitLiteral(using Context): Literal =
Literal(Constant(())).withAttachment(SyntheticUnit, ())
def nullLiteral(using Context): Literal =
Literal(Constant(null))
def New(tpt: Tree)(using Context): New =
ta.assignType(untpd.New(tpt), tpt)
def New(tp: Type)(using Context): New = New(TypeTree(tp))
def Typed(expr: Tree, tpt: Tree)(using Context): Typed =
ta.assignType(untpd.Typed(expr, tpt), tpt)
def NamedArg(name: Name, arg: Tree)(using Context): NamedArg =
ta.assignType(untpd.NamedArg(name, arg), arg)
def Assign(lhs: Tree, rhs: Tree)(using Context): Assign =
ta.assignType(untpd.Assign(lhs, rhs))
def Block(stats: List[Tree], expr: Tree)(using Context): Block =
ta.assignType(untpd.Block(stats, expr), stats, expr)
/** Join `stats` in front of `expr` creating a new block if necessary */
def seq(stats: List[Tree], expr: Tree)(using Context): Tree =
if (stats.isEmpty) expr
else expr match {
case Block(_, _: Closure) =>
Block(stats, expr) // leave closures in their own block
case Block(estats, eexpr) =>
cpy.Block(expr)(stats ::: estats, eexpr).withType(ta.avoidingType(eexpr, stats))
case _ =>
Block(stats, expr)
}
def If(cond: Tree, thenp: Tree, elsep: Tree)(using Context): If =
ta.assignType(untpd.If(cond, thenp, elsep), thenp, elsep)
def InlineIf(cond: Tree, thenp: Tree, elsep: Tree)(using Context): If =
ta.assignType(untpd.InlineIf(cond, thenp, elsep), thenp, elsep)
def Closure(env: List[Tree], meth: Tree, tpt: Tree)(using Context): Closure =
ta.assignType(untpd.Closure(env, meth, tpt), meth, tpt)
/** A function def
*
* vparams => expr
*
* gets expanded to
*
* { def $anonfun(vparams) = expr; Closure($anonfun) }
*
* where the closure's type is the target type of the expression (FunctionN, unless
* otherwise specified).
*/
def Closure(meth: TermSymbol, rhsFn: List[List[Tree]] => Tree, targs: List[Tree] = Nil, targetType: Type = NoType)(using Context): Block = {
val targetTpt = if (targetType.exists) TypeTree(targetType, inferred = true) else EmptyTree
val call =
if (targs.isEmpty) Ident(TermRef(NoPrefix, meth))
else TypeApply(Ident(TermRef(NoPrefix, meth)), targs)
var mdef0 = DefDef(meth, rhsFn)
val mdef = cpy.DefDef(mdef0)(tpt = TypeTree(mdef0.tpt.tpe, inferred = true))
Block(mdef :: Nil, Closure(Nil, call, targetTpt))
}
/** A closure whose anonymous function has the given method type */
def Lambda(tpe: MethodType, rhsFn: List[Tree] => Tree)(using Context): Block = {
val meth = newAnonFun(ctx.owner, tpe)
Closure(meth, tss => rhsFn(tss.head).changeOwner(ctx.owner, meth))
}
def CaseDef(pat: Tree, guard: Tree, body: Tree)(using Context): CaseDef =
ta.assignType(untpd.CaseDef(pat, guard, body), pat, body)
def Match(selector: Tree, cases: List[CaseDef])(using Context): Match =
ta.assignType(untpd.Match(selector, cases), selector, cases)
def InlineMatch(selector: Tree, cases: List[CaseDef])(using Context): Match =
ta.assignType(untpd.InlineMatch(selector, cases), selector, cases)
def Labeled(bind: Bind, expr: Tree)(using Context): Labeled =
ta.assignType(untpd.Labeled(bind, expr))
def Labeled(sym: TermSymbol, expr: Tree)(using Context): Labeled =
Labeled(Bind(sym, EmptyTree), expr)
def Return(expr: Tree, from: Tree)(using Context): Return =
ta.assignType(untpd.Return(expr, from))
def Return(expr: Tree, from: Symbol)(using Context): Return =
Return(expr, Ident(from.termRef))
def WhileDo(cond: Tree, body: Tree)(using Context): WhileDo =
ta.assignType(untpd.WhileDo(cond, body))
def Try(block: Tree, cases: List[CaseDef], finalizer: Tree)(using Context): Try =
ta.assignType(untpd.Try(block, cases, finalizer), block, cases)
def SeqLiteral(elems: List[Tree], elemtpt: Tree)(using Context): SeqLiteral =
ta.assignType(untpd.SeqLiteral(elems, elemtpt), elems, elemtpt)
def JavaSeqLiteral(elems: List[Tree], elemtpt: Tree)(using Context): JavaSeqLiteral =
ta.assignType(untpd.JavaSeqLiteral(elems, elemtpt), elems, elemtpt).asInstanceOf[JavaSeqLiteral]
def Inlined(call: Tree, bindings: List[MemberDef], expansion: Tree)(using Context): Inlined =
ta.assignType(untpd.Inlined(call, bindings, expansion), bindings, expansion)
def Quote(body: Tree, tags: List[Tree])(using Context): Quote =
untpd.Quote(body, tags).withBodyType(body.tpe)
def QuotePattern(bindings: List[Tree], body: Tree, quotes: Tree, proto: Type)(using Context): QuotePattern =
ta.assignType(untpd.QuotePattern(bindings, body, quotes), proto)
def Splice(expr: Tree, tpe: Type)(using Context): Splice =
untpd.Splice(expr).withType(tpe)
def Hole(isTerm: Boolean, idx: Int, args: List[Tree], content: Tree, tpe: Type)(using Context): Hole =
untpd.Hole(isTerm, idx, args, content).withType(tpe)
def TypeTree(tp: Type, inferred: Boolean = false)(using Context): TypeTree =
(if inferred then untpd.InferredTypeTree() else untpd.TypeTree()).withType(tp)
def SingletonTypeTree(ref: Tree)(using Context): SingletonTypeTree =
ta.assignType(untpd.SingletonTypeTree(ref), ref)
def RefinedTypeTree(parent: Tree, refinements: List[Tree], refineCls: ClassSymbol)(using Context): Tree =
ta.assignType(untpd.RefinedTypeTree(parent, refinements), parent, refinements, refineCls)
def AppliedTypeTree(tycon: Tree, args: List[Tree])(using Context): AppliedTypeTree =
ta.assignType(untpd.AppliedTypeTree(tycon, args), tycon, args)
def ByNameTypeTree(result: Tree)(using Context): ByNameTypeTree =
ta.assignType(untpd.ByNameTypeTree(result), result)
def LambdaTypeTree(tparams: List[TypeDef], body: Tree)(using Context): LambdaTypeTree =
ta.assignType(untpd.LambdaTypeTree(tparams, body), tparams, body)
def MatchTypeTree(bound: Tree, selector: Tree, cases: List[CaseDef])(using Context): MatchTypeTree =
ta.assignType(untpd.MatchTypeTree(bound, selector, cases), bound, selector, cases)
def TypeBoundsTree(lo: Tree, hi: Tree, alias: Tree = EmptyTree)(using Context): TypeBoundsTree =
ta.assignType(untpd.TypeBoundsTree(lo, hi, alias), lo, hi, alias)
def Bind(sym: Symbol, body: Tree)(using Context): Bind =
ta.assignType(untpd.Bind(sym.name, body), sym)
/** A pattern corresponding to `sym: tpe` */
def BindTyped(sym: TermSymbol, tpe: Type)(using Context): Bind =
Bind(sym, Typed(Underscore(tpe), TypeTree(tpe)))
def Alternative(trees: List[Tree])(using Context): Alternative =
ta.assignType(untpd.Alternative(trees), trees)
def UnApply(fun: Tree, implicits: List[Tree], patterns: List[Tree], proto: Type)(using Context): UnApply = {
assert(fun.isInstanceOf[RefTree] || fun.isInstanceOf[GenericApply])
ta.assignType(untpd.UnApply(fun, implicits, patterns), proto)
}
def ValDef(sym: TermSymbol, rhs: LazyTree = EmptyTree, inferred: Boolean = false)(using Context): ValDef =
ta.assignType(untpd.ValDef(sym.name, TypeTree(sym.info, inferred), rhs), sym)
def SyntheticValDef(name: TermName, rhs: Tree, flags: FlagSet = EmptyFlags)(using Context): ValDef =
ValDef(newSymbol(ctx.owner, name, Synthetic | flags, rhs.tpe.widen, coord = rhs.span), rhs)
def DefDef(sym: TermSymbol, paramss: List[List[Symbol]],
resultType: Type, rhs: Tree)(using Context): DefDef =
sym.setParamss(paramss)
ta.assignType(
untpd.DefDef(
sym.name,
paramss.map {
case TypeSymbols(params) => params.map(param => TypeDef(param).withSpan(param.span))
case TermSymbols(params) => params.map(param => ValDef(param).withSpan(param.span))
case _ => unreachable()
},
TypeTree(resultType),
rhs),
sym)
def DefDef(sym: TermSymbol, rhs: Tree = EmptyTree)(using Context): DefDef =
ta.assignType(DefDef(sym, Function.const(rhs) _), sym)
/** A DefDef with given method symbol `sym`.
* @rhsFn A function from parameter references
* to the method's right-hand side.
* Parameter symbols are taken from the `rawParamss` field of `sym`, or
* are freshly generated if `rawParamss` is empty.
*/
def DefDef(sym: TermSymbol, rhsFn: List[List[Tree]] => Tree)(using Context): DefDef =
// Map method type `tp` with remaining parameters stored in rawParamss to
// final result type and all (given or synthesized) parameters
def recur(tp: Type, remaining: List[List[Symbol]]): (Type, List[List[Symbol]]) = tp match
case tp: PolyType =>
val (tparams: List[TypeSymbol], remaining1) = remaining match
case tparams :: remaining1 =>
assert(tparams.hasSameLengthAs(tp.paramNames) && tparams.head.isType)
(tparams.asInstanceOf[List[TypeSymbol]], remaining1)
case nil =>
(newTypeParams(sym, tp.paramNames, EmptyFlags, tp.instantiateParamInfos(_)), Nil)
val (rtp, paramss) = recur(tp.instantiate(tparams.map(_.typeRef)), remaining1)
(rtp, tparams :: paramss)
case tp: MethodType =>
val isParamDependent = tp.isParamDependent
val previousParamRefs: ListBuffer[TermRef] =
// It is ok to assign `null` here.
// If `isParamDependent == false`, the value of `previousParamRefs` is not used.
if isParamDependent then mutable.ListBuffer[TermRef]() else (null: ListBuffer[TermRef] | Null).uncheckedNN
def valueParam(name: TermName, origInfo: Type, isErased: Boolean): TermSymbol =
val maybeImplicit =
if tp.isContextualMethod then Given
else if tp.isImplicitMethod then Implicit
else EmptyFlags
val maybeErased = if isErased then Erased else EmptyFlags
def makeSym(info: Type) = newSymbol(sym, name, TermParam | maybeImplicit | maybeErased, info, coord = sym.coord)
if isParamDependent then
val sym = makeSym(origInfo.substParams(tp, previousParamRefs.toList))
previousParamRefs += sym.termRef
sym
else makeSym(origInfo)
end valueParam
val (vparams: List[TermSymbol], remaining1) =
if tp.paramNames.isEmpty then (Nil, remaining)
else remaining match
case vparams :: remaining1 =>
assert(vparams.hasSameLengthAs(tp.paramNames) && vparams.head.isTerm)
(vparams.asInstanceOf[List[TermSymbol]], remaining1)
case nil =>
(tp.paramNames.lazyZip(tp.paramInfos).lazyZip(tp.erasedParams).map(valueParam), Nil)
val (rtp, paramss) = recur(tp.instantiate(vparams.map(_.termRef)), remaining1)
(rtp, vparams :: paramss)
case _ =>
assert(remaining.isEmpty)
(tp.widenExpr, Nil)
end recur
val (rtp, paramss) = recur(sym.info, sym.rawParamss)
DefDef(sym, paramss, rtp, rhsFn(paramss.nestedMap(ref)))
end DefDef
def TypeDef(sym: TypeSymbol)(using Context): TypeDef =
ta.assignType(untpd.TypeDef(sym.name, TypeTree(sym.info)), sym)
def ClassDef(cls: ClassSymbol, constr: DefDef, body: List[Tree], superArgs: List[Tree] = Nil)(using Context): TypeDef = {
val firstParent :: otherParents = cls.info.parents: @unchecked
val superRef =
if (cls.is(Trait)) TypeTree(firstParent)
else {
def isApplicable(ctpe: Type): Boolean = ctpe match {
case ctpe: PolyType =>
isApplicable(ctpe.instantiate(firstParent.argTypes))
case ctpe: MethodType =>
(superArgs corresponds ctpe.paramInfos)(_.tpe <:< _)
case _ =>
false
}
val constr = firstParent.decl(nme.CONSTRUCTOR).suchThat(constr => isApplicable(constr.info))
New(firstParent, constr.symbol.asTerm, superArgs)
}
ClassDefWithParents(cls, constr, superRef :: otherParents.map(TypeTree(_)), body)
}
def ClassDefWithParents(cls: ClassSymbol, constr: DefDef, parents: List[Tree], body: List[Tree])(using Context): TypeDef = {
val selfType =
if (cls.classInfo.selfInfo ne NoType) ValDef(newSelfSym(cls))
else EmptyValDef
def isOwnTypeParam(stat: Tree) =
stat.symbol.is(TypeParam) && stat.symbol.owner == cls
val bodyTypeParams = body filter isOwnTypeParam map (_.symbol)
val newTypeParams =
for (tparam <- cls.typeParams if !(bodyTypeParams contains tparam))
yield TypeDef(tparam)
val findLocalDummy = FindLocalDummyAccumulator(cls)
val localDummy = body.foldLeft(NoSymbol: Symbol)(findLocalDummy.apply)
.orElse(newLocalDummy(cls))
val impl = untpd.Template(constr, parents, Nil, selfType, newTypeParams ++ body)
.withType(localDummy.termRef)
ta.assignType(untpd.TypeDef(cls.name, impl), cls)
}
/** An anonymous class
*
* new parents { termForwarders; typeAliases }
*
* @param parents a non-empty list of class types
* @param termForwarders a non-empty list of forwarding definitions specified by their name and the definition they forward to.
* @param typeMembers a possibly-empty list of type members specified by their name and their right hand side.
*
* The class has the same owner as the first function in `termForwarders`.
* Its position is the union of all symbols in `termForwarders`.
*/
def AnonClass(parents: List[Type], termForwarders: List[(TermName, TermSymbol)],
typeMembers: List[(TypeName, TypeBounds)] = Nil)(using Context): Block = {
AnonClass(termForwarders.head._2.owner, parents, termForwarders.map(_._2.span).reduceLeft(_ union _)) { cls =>
def forwarder(name: TermName, fn: TermSymbol) = {
val fwdMeth = fn.copy(cls, name, Synthetic | Method | Final).entered.asTerm
for overridden <- fwdMeth.allOverriddenSymbols do
if overridden.is(Extension) then fwdMeth.setFlag(Extension)
if !overridden.is(Deferred) then fwdMeth.setFlag(Override)
DefDef(fwdMeth, ref(fn).appliedToArgss(_))
}
termForwarders.map((name, sym) => forwarder(name, sym)) ++
typeMembers.map((name, info) => TypeDef(newSymbol(cls, name, Synthetic, info).entered))
}
}
/** An anonymous class
*
* new parents { body }
*
* with the specified owner and position.
*/
def AnonClass(owner: Symbol, parents: List[Type], coord: Coord)(body: ClassSymbol => List[Tree])(using Context): Block =
val parents1 =
if (parents.head.classSymbol.is(Trait)) {
val head = parents.head.parents.head
if (head.isRef(defn.AnyClass)) defn.AnyRefType :: parents else head :: parents
}
else parents
val cls = newNormalizedClassSymbol(owner, tpnme.ANON_CLASS, Synthetic | Final, parents1, coord = coord)
val constr = newConstructor(cls, Synthetic, Nil, Nil).entered
val cdef = ClassDef(cls, DefDef(constr), body(cls))
Block(cdef :: Nil, New(cls.typeRef, Nil))
def Import(expr: Tree, selectors: List[untpd.ImportSelector])(using Context): Import =
ta.assignType(untpd.Import(expr, selectors), newImportSymbol(ctx.owner, expr))
def Export(expr: Tree, selectors: List[untpd.ImportSelector])(using Context): Export =
ta.assignType(untpd.Export(expr, selectors))
def PackageDef(pid: RefTree, stats: List[Tree])(using Context): PackageDef =
ta.assignType(untpd.PackageDef(pid, stats), pid)
def Annotated(arg: Tree, annot: Tree)(using Context): Annotated =
ta.assignType(untpd.Annotated(arg, annot), arg, annot)
def Throw(expr: Tree)(using Context): Tree =
ref(defn.throwMethod).appliedTo(expr)
// ------ Making references ------------------------------------------------------
def prefixIsElidable(tp: NamedType)(using Context): Boolean = {
val typeIsElidable = tp.prefix match {
case pre: ThisType =>
tp.isType ||
pre.cls.isStaticOwner ||
tp.symbol.isParamOrAccessor && !pre.cls.is(Trait) && !tp.symbol.owner.is(Trait) && ctx.owner.enclosingClass == pre.cls
// was ctx.owner.enclosingClass.derivesFrom(pre.cls) which was not tight enough
// and was spuriously triggered in case inner class would inherit from outer one
// eg anonymous TypeMap inside TypeMap.andThen
case pre: TermRef =>
pre.symbol.is(Module) && pre.symbol.isStatic
case pre =>
pre `eq` NoPrefix
}
typeIsElidable ||
tp.symbol.is(JavaStatic) ||
tp.symbol.hasAnnotation(defn.ScalaStaticAnnot)
}
def needsSelect(tp: Type)(using Context): Boolean = tp match {
case tp: TermRef => !prefixIsElidable(tp)
case _ => false
}
def needsIdent(tp: Type)(using Context): Boolean = tp match
case tp: TermRef => tp.prefix eq NoPrefix
case _ => false
/** A tree representing the same reference as the given type */
def ref(tp: NamedType, needLoad: Boolean = true)(using Context): Tree =
if (tp.isType) TypeTree(tp)
else if (prefixIsElidable(tp)) Ident(tp)
else if (tp.symbol.is(Module) && ctx.owner.isContainedIn(tp.symbol.moduleClass))
followOuterLinks(This(tp.symbol.moduleClass.asClass))
else if (tp.symbol hasAnnotation defn.ScalaStaticAnnot)
Ident(tp)
else
val pre = tp.prefix
if (pre.isSingleton) followOuterLinks(singleton(pre.dealias, needLoad)).select(tp)
else
val res = Select(TypeTree(pre), tp)
if needLoad && !res.symbol.isStatic then
throw TypeError(em"cannot establish a reference to $res")
res
def ref(sym: Symbol)(using Context): Tree =
ref(NamedType(sym.owner.thisType, sym.name, sym.denot))
private def followOuterLinks(t: Tree)(using Context) = t match {
case t: This if ctx.erasedTypes && !(t.symbol == ctx.owner.enclosingClass || t.symbol.isStaticOwner) =>
// after erasure outer paths should be respected
ExplicitOuter.OuterOps(ctx).path(toCls = t.tpe.classSymbol)
case t =>
t
}
def singleton(tp: Type, needLoad: Boolean = true)(using Context): Tree = tp.dealias match {
case tp: TermRef => ref(tp, needLoad)
case tp: ThisType => This(tp.cls)
case tp: SkolemType => singleton(tp.narrow, needLoad)
case SuperType(qual, _) => singleton(qual, needLoad)
case ConstantType(value) => Literal(value)
}
/** A path that corresponds to the given type `tp`. Error if `tp` is not a refinement
* of an addressable singleton type.
*/
def pathFor(tp: Type)(using Context): Tree = {
def recur(tp: Type): Tree = tp match {
case tp: NamedType =>
tp.info match {
case TypeAlias(alias) => recur(alias)
case _: TypeBounds => EmptyTree
case _ => singleton(tp)
}
case tp: TypeProxy => recur(tp.superType)
case _ => EmptyTree
}
recur(tp).orElse {
report.error(em"$tp is not an addressable singleton type")
TypeTree(tp)
}
}
/** A tree representing a `newXYZArray` operation of the right
* kind for the given element type in `elemTpe`. No type arguments or
* `length` arguments are given.
*/
def newArray(elemTpe: Type, returnTpe: Type, span: Span, dims: JavaSeqLiteral)(using Context): Tree = {
val elemClass = elemTpe.classSymbol
def newArr =
ref(defn.DottyArraysModule).select(defn.newArrayMethod).withSpan(span)
if (!ctx.erasedTypes) {
assert(!TypeErasure.isGeneric(elemTpe), elemTpe) //needs to be done during typer. See Applications.convertNewGenericArray
newArr.appliedToTypeTrees(TypeTree(returnTpe) :: Nil).appliedToTermArgs(clsOf(elemTpe) :: clsOf(returnTpe) :: dims :: Nil).withSpan(span)
}
else // after erasure
newArr.appliedToTermArgs(clsOf(elemTpe) :: clsOf(returnTpe) :: dims :: Nil).withSpan(span)
}
/** The wrapped array method name for an array of type elemtp */
def wrapArrayMethodName(elemtp: Type)(using Context): TermName = {
val elemCls = elemtp.classSymbol
if (elemCls.isPrimitiveValueClass) nme.wrapXArray(elemCls.name)
else if (elemCls.derivesFrom(defn.ObjectClass) && !elemCls.isNotRuntimeClass) nme.wrapRefArray
else nme.genericWrapArray
}
/** A tree representing a `wrapXYZArray(tree)` operation of the right
* kind for the given element type in `elemTpe`.
*/
def wrapArray(tree: Tree, elemtp: Type)(using Context): Tree =
val wrapper = ref(defn.getWrapVarargsArrayModule)
.select(wrapArrayMethodName(elemtp))
.appliedToTypes(if (elemtp.isPrimitiveValueType) Nil else elemtp :: Nil)
val actualElem = wrapper.tpe.widen.firstParamTypes.head
wrapper.appliedTo(tree.ensureConforms(actualElem))
// ------ Creating typed equivalents of trees that exist only in untyped form -------
/** new C(args), calling the primary constructor of C */
def New(tp: Type, args: List[Tree])(using Context): Apply =
New(tp, tp.dealias.typeSymbol.primaryConstructor.asTerm, args)
/** new C(args), calling given constructor `constr` of C */
def New(tp: Type, constr: TermSymbol, args: List[Tree])(using Context): Apply = {
val targs = tp.argTypes
val tycon = tp.typeConstructor
New(tycon)
.select(TermRef(tycon, constr))
.appliedToTypes(targs)
.appliedToTermArgs(args)
}
/** An object def
*
* object obs extends parents { decls }
*
* gets expanded to
*
* <module> val obj = new obj$
* <module> class obj$ extends parents { this: obj.type => decls }
*
* (The following no longer applies:
* What's interesting here is that the block is well typed
* (because class obj$ is hoistable), but the type of the `obj` val is
* not expressible. What needs to happen in general when
* inferring the type of a val from its RHS, is: if the type contains
* a class that has the val itself as owner, then that class
* is remapped to have the val's owner as owner. Remapping could be
* done by cloning the class with the new owner and substituting
* everywhere in the tree. We know that remapping is safe
* because the only way a local class can appear in the RHS of a val is
* by being hoisted outside of a block, and the necessary checks are
* done at this point already.
*
* On the other hand, for method result type inference, if the type of
* the RHS of a method contains a class owned by the method, this would be
* an error.)
*/
def ModuleDef(sym: TermSymbol, body: List[Tree])(using Context): tpd.Thicket = {
val modcls = sym.moduleClass.asClass
val constrSym = modcls.primaryConstructor orElse newDefaultConstructor(modcls).entered
val constr = DefDef(constrSym.asTerm, EmptyTree)
val clsdef = ClassDef(modcls, constr, body)
val valdef = ValDef(sym, New(modcls.typeRef).select(constrSym).appliedToNone)
Thicket(valdef, clsdef)
}
/** A `_` with given type */
def Underscore(tp: Type)(using Context): Ident = untpd.Ident(nme.WILDCARD).withType(tp)
def defaultValue(tpe: Type)(using Context): Tree = {
val tpw = tpe.widen
if (tpw isRef defn.IntClass) Literal(Constant(0))
else if (tpw isRef defn.LongClass) Literal(Constant(0L))
else if (tpw isRef defn.BooleanClass) Literal(Constant(false))
else if (tpw isRef defn.CharClass) Literal(Constant('\u0000'))
else if (tpw isRef defn.FloatClass) Literal(Constant(0f))
else if (tpw isRef defn.DoubleClass) Literal(Constant(0d))
else if (tpw isRef defn.ByteClass) Literal(Constant(0.toByte))
else if (tpw isRef defn.ShortClass) Literal(Constant(0.toShort))
else nullLiteral.select(defn.Any_asInstanceOf).appliedToType(tpe)
}
private class FindLocalDummyAccumulator(cls: ClassSymbol)(using Context) extends TreeAccumulator[Symbol] {
def apply(sym: Symbol, tree: Tree)(using Context) =
if (sym.exists) sym
else if (tree.isDef) {
val owner = tree.symbol.owner
if (owner.isLocalDummy && owner.owner == cls) owner
else if (owner == cls) foldOver(sym, tree)
else sym
}
else foldOver(sym, tree)
}
/** The owner to be used in a local context when traversing a tree */
def localOwner(tree: Tree)(using Context): Symbol =
val sym = tree.symbol
(if sym.is(PackageVal) then sym.moduleClass else sym).orElse(ctx.owner)
/** The local context to use when traversing trees */
def localCtx(tree: Tree)(using Context): Context = ctx.withOwner(localOwner(tree))
override val cpy: TypedTreeCopier = // Type ascription needed to pick up any new members in TreeCopier (currently there are none)
TypedTreeCopier()
val cpyBetweenPhases: TimeTravellingTreeCopier = TimeTravellingTreeCopier()
class TypedTreeCopier extends TreeCopier {
def postProcess(tree: Tree, copied: untpd.Tree): copied.ThisTree[Type] =
copied.withTypeUnchecked(tree.tpe)
def postProcess(tree: Tree, copied: untpd.MemberDef): copied.ThisTree[Type] =
copied.withTypeUnchecked(tree.tpe)
protected val untpdCpy = untpd.cpy
override def Select(tree: Tree)(qualifier: Tree, name: Name)(using Context): Select = {
val tree1 = untpdCpy.Select(tree)(qualifier, name)
tree match {
case tree: Select if qualifier.tpe eq tree.qualifier.tpe =>
tree1.withTypeUnchecked(tree.tpe)
case _ =>
val tree2: Select = tree.tpe match {
case tpe: NamedType =>
val qualType = qualifier.tpe.widenIfUnstable
if qualType.isExactlyNothing then tree1.withTypeUnchecked(tree.tpe)
else tree1.withType(tpe.derivedSelect(qualType))
case _ => tree1.withTypeUnchecked(tree.tpe)
}
ConstFold.Select(tree2)
}
}
override def Apply(tree: Tree)(fun: Tree, args: List[Tree])(using Context): Apply = {
val tree1 = untpdCpy.Apply(tree)(fun, args)
tree match {
case tree: Apply
if (fun.tpe eq tree.fun.tpe) && sameTypes(args, tree.args) =>
tree1.withTypeUnchecked(tree.tpe)
case _ => ta.assignType(tree1, fun, args)
}
}
override def TypeApply(tree: Tree)(fun: Tree, args: List[Tree])(using Context): TypeApply = {
val tree1 = untpdCpy.TypeApply(tree)(fun, args)
tree match {
case tree: TypeApply
if (fun.tpe eq tree.fun.tpe) && sameTypes(args, tree.args) =>
tree1.withTypeUnchecked(tree.tpe)
case _ => ta.assignType(tree1, fun, args)
}
}
override def Literal(tree: Tree)(const: Constant)(using Context): Literal =
ta.assignType(untpdCpy.Literal(tree)(const))
override def New(tree: Tree)(tpt: Tree)(using Context): New =
ta.assignType(untpdCpy.New(tree)(tpt), tpt)
override def Typed(tree: Tree)(expr: Tree, tpt: Tree)(using Context): Typed =
ta.assignType(untpdCpy.Typed(tree)(expr, tpt), tpt)
override def NamedArg(tree: Tree)(name: Name, arg: Tree)(using Context): NamedArg =
ta.assignType(untpdCpy.NamedArg(tree)(name, arg), arg)
override def Assign(tree: Tree)(lhs: Tree, rhs: Tree)(using Context): Assign =
ta.assignType(untpdCpy.Assign(tree)(lhs, rhs))
override def Block(tree: Tree)(stats: List[Tree], expr: Tree)(using Context): Block = {
val tree1 = untpdCpy.Block(tree)(stats, expr)
tree match {
case tree: Block if (expr.tpe eq tree.expr.tpe) && (expr.tpe eq tree.tpe) =>
// The last guard is a conservative check: if `tree.tpe` is different from `expr.tpe`, then
// it was computed from widening `expr.tpe`, and tree transforms might cause `expr.tpe.widen`
// to change even if `expr.tpe` itself didn't change, e.g:
// { val s = ...; s }
// If the type of `s` changed, then the type of the block might have changed, even though `expr.tpe`
// will still be `TermRef(NoPrefix, s)`
tree1.withTypeUnchecked(tree.tpe)
case _ => ta.assignType(tree1, stats, expr)
}
}
override def If(tree: Tree)(cond: Tree, thenp: Tree, elsep: Tree)(using Context): If = {
val tree1 = untpdCpy.If(tree)(cond, thenp, elsep)
tree match {
case tree: If if (thenp.tpe eq tree.thenp.tpe) && (elsep.tpe eq tree.elsep.tpe) &&
((tree.tpe eq thenp.tpe) || (tree.tpe eq elsep.tpe)) =>
// The last guard is a conservative check similar to the one done in `Block` above,
// if `tree.tpe` is not identical to the type of one of its branch, it might have been
// computed from the widened type of the branches, so the same reasoning than
// in `Block` applies.
tree1.withTypeUnchecked(tree.tpe)
case _ => ta.assignType(tree1, thenp, elsep)
}
}
override def Closure(tree: Tree)(env: List[Tree], meth: Tree, tpt: Tree)(using Context): Closure = {
val tree1 = untpdCpy.Closure(tree)(env, meth, tpt)
tree match {
case tree: Closure if sameTypes(env, tree.env) && (meth.tpe eq tree.meth.tpe) && (tpt.tpe eq tree.tpt.tpe) =>
tree1.withTypeUnchecked(tree.tpe)
case _ => ta.assignType(tree1, meth, tpt)
}
}
override def Match(tree: Tree)(selector: Tree, cases: List[CaseDef])(using Context): Match = {
val tree1 = untpdCpy.Match(tree)(selector, cases)
tree match {
case tree: Match if sameTypes(cases, tree.cases) => tree1.withTypeUnchecked(tree.tpe)
case _ => ta.assignType(tree1, selector, cases)
}
}
override def CaseDef(tree: Tree)(pat: Tree, guard: Tree, body: Tree)(using Context): CaseDef = {
val tree1 = untpdCpy.CaseDef(tree)(pat, guard, body)
tree match {
case tree: CaseDef if body.tpe eq tree.body.tpe => tree1.withTypeUnchecked(tree.tpe)
case _ => ta.assignType(tree1, pat, body)
}
}
override def Labeled(tree: Tree)(bind: Bind, expr: Tree)(using Context): Labeled =
ta.assignType(untpdCpy.Labeled(tree)(bind, expr))
override def Return(tree: Tree)(expr: Tree, from: Tree)(using Context): Return =
ta.assignType(untpdCpy.Return(tree)(expr, from))
override def WhileDo(tree: Tree)(cond: Tree, body: Tree)(using Context): WhileDo =
ta.assignType(untpdCpy.WhileDo(tree)(cond, body))
override def Try(tree: Tree)(expr: Tree, cases: List[CaseDef], finalizer: Tree)(using Context): Try = {
val tree1 = untpdCpy.Try(tree)(expr, cases, finalizer)
tree match {
case tree: Try if (expr.tpe eq tree.expr.tpe) && sameTypes(cases, tree.cases) => tree1.withTypeUnchecked(tree.tpe)
case _ => ta.assignType(tree1, expr, cases)
}
}
override def Inlined(tree: Inlined)(call: Tree, bindings: List[MemberDef], expansion: Tree)(using Context): Inlined = {
val tree1 = untpdCpy.Inlined(tree)(call, bindings, expansion)
tree match {
case tree: Inlined if sameTypes(bindings, tree.bindings) && (expansion.tpe eq tree.expansion.tpe) =>
tree1.withTypeUnchecked(tree.tpe)
case _ => ta.assignType(tree1, bindings, expansion)
}
}
override def SeqLiteral(tree: Tree)(elems: List[Tree], elemtpt: Tree)(using Context): SeqLiteral = {
val tree1 = untpdCpy.SeqLiteral(tree)(elems, elemtpt)
tree match {
case tree: SeqLiteral
if sameTypes(elems, tree.elems) && (elemtpt.tpe eq tree.elemtpt.tpe) =>
tree1.withTypeUnchecked(tree.tpe)
case _ =>
ta.assignType(tree1, elems, elemtpt)
}
}
override def Annotated(tree: Tree)(arg: Tree, annot: Tree)(using Context): Annotated = {
val tree1 = untpdCpy.Annotated(tree)(arg, annot)
tree match {
case tree: Annotated if (arg.tpe eq tree.arg.tpe) && (annot eq tree.annot) => tree1.withTypeUnchecked(tree.tpe)
case _ => ta.assignType(tree1, arg, annot)
}
}
override def If(tree: If)(cond: Tree = tree.cond, thenp: Tree = tree.thenp, elsep: Tree = tree.elsep)(using Context): If =
If(tree: Tree)(cond, thenp, elsep)
override def Closure(tree: Closure)(env: List[Tree] = tree.env, meth: Tree = tree.meth, tpt: Tree = tree.tpt)(using Context): Closure =
Closure(tree: Tree)(env, meth, tpt)
override def CaseDef(tree: CaseDef)(pat: Tree = tree.pat, guard: Tree = tree.guard, body: Tree = tree.body)(using Context): CaseDef =
CaseDef(tree: Tree)(pat, guard, body)
override def Try(tree: Try)(expr: Tree = tree.expr, cases: List[CaseDef] = tree.cases, finalizer: Tree = tree.finalizer)(using Context): Try =
Try(tree: Tree)(expr, cases, finalizer)
}
class TimeTravellingTreeCopier extends TypedTreeCopier {
override def Apply(tree: Tree)(fun: Tree, args: List[Tree])(using Context): Apply =
tree match
case tree: Apply
if (tree.fun eq fun) && (tree.args eq args)
&& tree.tpe.isInstanceOf[ConstantType]
&& isPureExpr(tree) => tree
case _ =>
ta.assignType(untpdCpy.Apply(tree)(fun, args), fun, args)
// Note: Reassigning the original type if `fun` and `args` have the same types as before
// does not work here in general: The computed type depends on the widened function type, not
// the function type itself. A tree transform may keep the function type the
// same but its widened type might change.
// However, we keep constant types of pure expressions. This uses the underlying assumptions
// that pure functions yielding a constant will not change in later phases.
override def TypeApply(tree: Tree)(fun: Tree, args: List[Tree])(using Context): TypeApply =
ta.assignType(untpdCpy.TypeApply(tree)(fun, args), fun, args)
// Same remark as for Apply
override def Closure(tree: Tree)(env: List[Tree], meth: Tree, tpt: Tree)(using Context): Closure =
ta.assignType(untpdCpy.Closure(tree)(env, meth, tpt), meth, tpt)
override def Closure(tree: Closure)(env: List[Tree] = tree.env, meth: Tree = tree.meth, tpt: Tree = tree.tpt)(using Context): Closure =
Closure(tree: Tree)(env, meth, tpt)
}
override def skipTransform(tree: Tree)(using Context): Boolean = tree.tpe.isError
implicit class TreeOps[ThisTree <: tpd.Tree](private val tree: ThisTree) extends AnyVal {
def isValue(using Context): Boolean =
tree.isTerm && tree.tpe.widen.isValueType
def isValueOrPattern(using Context): Boolean =
tree.isValue || tree.isPattern
def isValueType: Boolean =
tree.isType && tree.tpe.isValueType
def isInstantiation: Boolean = tree match {
case Apply(Select(New(_), nme.CONSTRUCTOR), _) => true
case _ => false
}
def shallowFold[T](z: T)(op: (T, tpd.Tree) => T)(using Context): T =
ShallowFolder(op).apply(z, tree)
def deepFold[T](z: T)(op: (T, tpd.Tree) => T)(using Context): T =
DeepFolder(op).apply(z, tree)
def find[T](pred: (tpd.Tree) => Boolean)(using Context): Option[tpd.Tree] =
shallowFold[Option[tpd.Tree]](None)((accum, tree) => if (pred(tree)) Some(tree) else accum)
def subst(from: List[Symbol], to: List[Symbol])(using Context): ThisTree =
TreeTypeMap(substFrom = from, substTo = to).apply(tree)
/** Change owner from `from` to `to`. If `from` is a weak owner, also change its
* owner to `to`, and continue until a non-weak owner is reached.
*/
def changeOwner(from: Symbol, to: Symbol)(using Context): ThisTree = {
@tailrec def loop(from: Symbol, froms: List[Symbol], tos: List[Symbol]): ThisTree =
if (from.isWeakOwner && !from.owner.isClass)
loop(from.owner, from :: froms, to :: tos)
else
//println(i"change owner ${from :: froms}%, % ==> $tos of $tree")
TreeTypeMap(oldOwners = from :: froms, newOwners = tos).apply(tree)
if (from == to) tree else loop(from, Nil, to :: Nil)
}
/**
* Set the owner of every definition in this tree which is not itself contained in this
* tree to be `newowner`
*/
def changeNonLocalOwners(newOwner: Symbol)(using Context): Tree = {
val ownerAcc = new TreeAccumulator[immutable.Set[Symbol]] {
def apply(ss: immutable.Set[Symbol], tree: Tree)(using Context) = tree match {
case tree: DefTree =>
val sym = tree.symbol
if sym.exists && !sym.owner.is(Package) then ss + sym.owner else ss
case _ =>
foldOver(ss, tree)
}
}
val owners = ownerAcc(immutable.Set.empty[Symbol], tree).toList
val newOwners = List.fill(owners.size)(newOwner)
TreeTypeMap(oldOwners = owners, newOwners = newOwners).apply(tree)
}
/** After phase `trans`, set the owner of every definition in this tree that was formerly
* owned by `from` to `to`.
*/
def changeOwnerAfter(from: Symbol, to: Symbol, trans: DenotTransformer)(using Context): ThisTree =
if (ctx.phase == trans.next) {
val traverser = new TreeTraverser {
def traverse(tree: Tree)(using Context) = tree match {
case tree: DefTree =>
val sym = tree.symbol
val prevDenot = atPhase(trans)(sym.denot)
if (prevDenot.effectiveOwner == from.skipWeakOwner) {
val d = sym.copySymDenotation(owner = to)
d.installAfter(trans)
d.transformAfter(trans, d => if (d.owner eq from) d.copySymDenotation(owner = to) else d)
}
if (sym.isWeakOwner) traverseChildren(tree)
case _ =>
traverseChildren(tree)
}
}
traverser.traverse(tree)
tree
}
else atPhase(trans.next)(changeOwnerAfter(from, to, trans))
/** A select node with the given selector name and a computed type */
def select(name: Name)(using Context): Select =
Select(tree, name)
/** A select node with the given selector name such that the designated
* member satisfies predicate `p`. Useful for disambiguating overloaded members.
*/
def select(name: Name, p: Symbol => Boolean)(using Context): Select =
select(tree.tpe.member(name).suchThat(p).symbol)
/** A select node with the given type */
def select(tp: NamedType)(using Context): Select =
untpd.Select(tree, tp.name).withType(tp)
/** A select node that selects the given symbol. Note: Need to make sure this
* is in fact the symbol you would get when you select with the symbol's name,
* otherwise a data race may occur which would be flagged by -Yno-double-bindings.
*/
def select(sym: Symbol)(using Context): Select = {
val tp =
if (sym.isType) {
assert(!sym.is(TypeParam))
TypeRef(tree.tpe, sym.asType)
}
else
TermRef(tree.tpe, sym.name.asTermName, sym.denot.asSeenFrom(tree.tpe))
untpd.Select(tree, sym.name).withType(tp)
}
/** A select node with the given selector name and signature and a computed type */
def selectWithSig(name: Name, sig: Signature, target: Name)(using Context): Tree =
untpd.SelectWithSig(tree, name, sig).withType(tree.tpe.select(name.asTermName, sig, target))
/** A select node with selector name and signature taken from `sym`.
* Note: Use this method instead of select(sym) if the referenced symbol
* might be overridden in the type of the qualifier prefix. See note
* on select(sym: Symbol).
*/
def selectWithSig(sym: Symbol)(using Context): Tree =
selectWithSig(sym.name, sym.signature, sym.targetName)
/** A unary apply node with given argument: `tree(arg)` */
def appliedTo(arg: Tree)(using Context): Apply =
appliedToTermArgs(arg :: Nil)
/** An apply node with given arguments: `tree(arg, args0, ..., argsN)` */
def appliedTo(arg: Tree, args: Tree*)(using Context): Apply =
appliedToTermArgs(arg :: args.toList)
/** An apply node with given argument list `tree(args(0), ..., args(args.length - 1))` */
def appliedToTermArgs(args: List[Tree])(using Context): Apply =
Apply(tree, args)
/** An applied node that accepts only varargs as arguments */
def appliedToVarargs(args: List[Tree], tpt: Tree)(using Context): Apply =
appliedTo(repeated(args, tpt))
/** An apply or type apply node with given argument list */
def appliedToArgs(args: List[Tree])(using Context): GenericApply = args match
case arg :: args1 if arg.isType => TypeApply(tree, args)
case _ => Apply(tree, args)
/** The current tree applied to given argument lists:
* `tree (argss(0)) ... (argss(argss.length -1))`
*/
def appliedToArgss(argss: List[List[Tree]])(using Context): Tree =
argss.foldLeft(tree: Tree)(_.appliedToArgs(_))
/** The current tree applied to (): `tree()` */
def appliedToNone(using Context): Apply = Apply(tree, Nil)
/** The current tree applied to given type argument: `tree[targ]` */
def appliedToType(targ: Type)(using Context): Tree =
appliedToTypes(targ :: Nil)
/** The current tree applied to given type arguments: `tree[targ0, ..., targN]` */
def appliedToTypes(targs: List[Type])(using Context): Tree =
appliedToTypeTrees(targs map (TypeTree(_)))
/** The current tree applied to given type argument: `tree[targ]` */
def appliedToTypeTree(targ: Tree)(using Context): Tree =
appliedToTypeTrees(targ :: Nil)
/** The current tree applied to given type argument list: `tree[targs(0), ..., targs(targs.length - 1)]` */
def appliedToTypeTrees(targs: List[Tree])(using Context): Tree =
if targs.isEmpty then tree else TypeApply(tree, targs)
/** Apply to `()` unless tree's widened type is parameterless */
def ensureApplied(using Context): Tree =
if (tree.tpe.widen.isParameterless) tree else tree.appliedToNone
/** `tree == that` */
def equal(that: Tree)(using Context): Tree =
if (that.tpe.widen.isRef(defn.NothingClass))
Literal(Constant(false))
else