-
-
Notifications
You must be signed in to change notification settings - Fork 25.8k
/
Copy path_array_api.py
1057 lines (835 loc) · 34.5 KB
/
_array_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Tools to support array_api."""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import itertools
import math
import os
from functools import wraps
import numpy
import scipy
import scipy.sparse as sp
import scipy.special as special
from .._config import get_config
from .fixes import parse_version
_NUMPY_NAMESPACE_NAMES = {"numpy", "array_api_compat.numpy"}
def yield_namespaces(include_numpy_namespaces=True):
"""Yield supported namespace.
This is meant to be used for testing purposes only.
Parameters
----------
include_numpy_namespaces : bool, default=True
If True, also yield numpy namespaces.
Returns
-------
array_namespace : str
The name of the Array API namespace.
"""
for array_namespace in [
# The following is used to test the array_api_compat wrapper when
# array_api_dispatch is enabled: in particular, the arrays used in the
# tests are regular numpy arrays without any "device" attribute.
"numpy",
# Stricter NumPy-based Array API implementation. The
# array_api_strict.Array instances always have a dummy "device" attribute.
"array_api_strict",
"cupy",
"torch",
]:
if not include_numpy_namespaces and array_namespace in _NUMPY_NAMESPACE_NAMES:
continue
yield array_namespace
def yield_namespace_device_dtype_combinations(include_numpy_namespaces=True):
"""Yield supported namespace, device, dtype tuples for testing.
Use this to test that an estimator works with all combinations.
Parameters
----------
include_numpy_namespaces : bool, default=True
If True, also yield numpy namespaces.
Returns
-------
array_namespace : str
The name of the Array API namespace.
device : str
The name of the device on which to allocate the arrays. Can be None to
indicate that the default value should be used.
dtype_name : str
The name of the data type to use for arrays. Can be None to indicate
that the default value should be used.
"""
for array_namespace in yield_namespaces(
include_numpy_namespaces=include_numpy_namespaces
):
if array_namespace == "torch":
for device, dtype in itertools.product(
("cpu", "cuda"), ("float64", "float32")
):
yield array_namespace, device, dtype
yield array_namespace, "mps", "float32"
else:
yield array_namespace, None, None
def _check_array_api_dispatch(array_api_dispatch):
"""Check that array_api_compat is installed and NumPy version is compatible.
array_api_compat follows NEP29, which has a higher minimum NumPy version than
scikit-learn.
"""
if array_api_dispatch:
try:
import array_api_compat # noqa
except ImportError:
raise ImportError(
"array_api_compat is required to dispatch arrays using the API"
" specification"
)
numpy_version = parse_version(numpy.__version__)
min_numpy_version = "1.21"
if numpy_version < parse_version(min_numpy_version):
raise ImportError(
f"NumPy must be {min_numpy_version} or newer (found"
f" {numpy.__version__}) to dispatch array using"
" the array API specification"
)
scipy_version = parse_version(scipy.__version__)
min_scipy_version = "1.14.0"
if scipy_version < parse_version(min_scipy_version):
raise ImportError(
f"SciPy must be {min_scipy_version} or newer"
" (found {scipy.__version__}) to dispatch array using"
" the array API specification"
)
if os.environ.get("SCIPY_ARRAY_API") != "1":
raise RuntimeError(
"Scikit-learn array API support was enabled but scipy's own support is "
"not enabled. Please set the SCIPY_ARRAY_API=1 environment variable "
"before importing sklearn or scipy. More details at: "
"https://docs.scipy.org/doc/scipy/dev/api-dev/array_api.html"
)
def _single_array_device(array):
"""Hardware device where the array data resides on."""
if isinstance(array, (numpy.ndarray, numpy.generic)) or not hasattr(
array, "device"
):
return "cpu"
else:
return array.device
def device(*array_list, remove_none=True, remove_types=(str,)):
"""Hardware device where the array data resides on.
If the hardware device is not the same for all arrays, an error is raised.
Parameters
----------
*array_list : arrays
List of array instances from NumPy or an array API compatible library.
remove_none : bool, default=True
Whether to ignore None objects passed in array_list.
remove_types : tuple or list, default=(str,)
Types to ignore in array_list.
Returns
-------
out : device
`device` object (see the "Device Support" section of the array API spec).
"""
array_list = _remove_non_arrays(
*array_list, remove_none=remove_none, remove_types=remove_types
)
if not array_list:
return None
device_ = _single_array_device(array_list[0])
# Note: here we cannot simply use a Python `set` as it requires
# hashable members which is not guaranteed for Array API device
# objects. In particular, CuPy devices are not hashable at the
# time of writing.
for array in array_list[1:]:
device_other = _single_array_device(array)
if device_ != device_other:
raise ValueError(
f"Input arrays use different devices: {str(device_)}, "
f"{str(device_other)}"
)
return device_
def size(x):
"""Return the total number of elements of x.
Parameters
----------
x : array
Array instance from NumPy or an array API compatible library.
Returns
-------
out : int
Total number of elements.
"""
return math.prod(x.shape)
def _is_numpy_namespace(xp):
"""Return True if xp is backed by NumPy."""
return xp.__name__ in _NUMPY_NAMESPACE_NAMES
def _union1d(a, b, xp):
if _is_numpy_namespace(xp):
# avoid circular import
from ._unique import cached_unique
a_unique, b_unique = cached_unique(a, b, xp=xp)
return xp.asarray(numpy.union1d(a_unique, b_unique))
assert a.ndim == b.ndim == 1
return xp.unique_values(xp.concat([xp.unique_values(a), xp.unique_values(b)]))
def isdtype(dtype, kind, *, xp):
"""Returns a boolean indicating whether a provided dtype is of type "kind".
Included in the v2022.12 of the Array API spec.
https://data-apis.org/array-api/latest/API_specification/generated/array_api.isdtype.html
"""
if isinstance(kind, tuple):
return any(_isdtype_single(dtype, k, xp=xp) for k in kind)
else:
return _isdtype_single(dtype, kind, xp=xp)
def _isdtype_single(dtype, kind, *, xp):
if isinstance(kind, str):
if kind == "bool":
return dtype == xp.bool
elif kind == "signed integer":
return dtype in {xp.int8, xp.int16, xp.int32, xp.int64}
elif kind == "unsigned integer":
return dtype in {xp.uint8, xp.uint16, xp.uint32, xp.uint64}
elif kind == "integral":
return any(
_isdtype_single(dtype, k, xp=xp)
for k in ("signed integer", "unsigned integer")
)
elif kind == "real floating":
return dtype in supported_float_dtypes(xp)
elif kind == "complex floating":
# Some name spaces might not have support for complex dtypes.
complex_dtypes = set()
if hasattr(xp, "complex64"):
complex_dtypes.add(xp.complex64)
if hasattr(xp, "complex128"):
complex_dtypes.add(xp.complex128)
return dtype in complex_dtypes
elif kind == "numeric":
return any(
_isdtype_single(dtype, k, xp=xp)
for k in ("integral", "real floating", "complex floating")
)
else:
raise ValueError(f"Unrecognized data type kind: {kind!r}")
else:
return dtype == kind
def supported_float_dtypes(xp):
"""Supported floating point types for the namespace.
Note: float16 is not officially part of the Array API spec at the
time of writing but scikit-learn estimators and functions can choose
to accept it when xp.float16 is defined.
https://data-apis.org/array-api/latest/API_specification/data_types.html
"""
if hasattr(xp, "float16"):
return (xp.float64, xp.float32, xp.float16)
else:
return (xp.float64, xp.float32)
def ensure_common_namespace_device(reference, *arrays):
"""Ensure that all arrays use the same namespace and device as reference.
If necessary the arrays are moved to the same namespace and device as
the reference array.
Parameters
----------
reference : array
Reference array.
*arrays : array
Arrays to check.
Returns
-------
arrays : list
Arrays with the same namespace and device as reference.
"""
xp, is_array_api = get_namespace(reference)
if is_array_api:
device_ = device(reference)
# Move arrays to the same namespace and device as the reference array.
return [xp.asarray(a, device=device_) for a in arrays]
else:
return arrays
def _check_device_cpu(device): # noqa
if device not in {"cpu", None}:
raise ValueError(f"Unsupported device for NumPy: {device!r}")
def _accept_device_cpu(func):
@wraps(func)
def wrapped_func(*args, **kwargs):
_check_device_cpu(kwargs.pop("device", None))
return func(*args, **kwargs)
return wrapped_func
class _NumPyAPIWrapper:
"""Array API compat wrapper for any numpy version
NumPy < 2 does not implement the namespace. NumPy 2 and later should
progressively implement more an more of the latest Array API spec but this
is still work in progress at this time.
This wrapper makes it possible to write code that uses the standard Array
API while working with any version of NumPy supported by scikit-learn.
See the `get_namespace()` public function for more details.
"""
# TODO: once scikit-learn drops support for NumPy < 2, this class can be
# removed, assuming Array API compliance of NumPy 2 is actually sufficient
# for scikit-learn's needs.
# Creation functions in spec:
# https://data-apis.org/array-api/latest/API_specification/creation_functions.html
_CREATION_FUNCS = {
"arange",
"empty",
"empty_like",
"eye",
"full",
"full_like",
"linspace",
"ones",
"ones_like",
"zeros",
"zeros_like",
}
# Data types in spec
# https://data-apis.org/array-api/latest/API_specification/data_types.html
_DTYPES = {
"int8",
"int16",
"int32",
"int64",
"uint8",
"uint16",
"uint32",
"uint64",
# XXX: float16 is not part of the Array API spec but exposed by
# some namespaces.
"float16",
"float32",
"float64",
"complex64",
"complex128",
}
def __getattr__(self, name):
attr = getattr(numpy, name)
# Support device kwargs and make sure they are on the CPU
if name in self._CREATION_FUNCS:
return _accept_device_cpu(attr)
# Convert to dtype objects
if name in self._DTYPES:
return numpy.dtype(attr)
return attr
@property
def bool(self):
return numpy.bool_
def astype(self, x, dtype, *, copy=True, casting="unsafe"):
# astype is not defined in the top level NumPy namespace
return x.astype(dtype, copy=copy, casting=casting)
def asarray(self, x, *, dtype=None, device=None, copy=None): # noqa
_check_device_cpu(device)
# Support copy in NumPy namespace
if copy is True:
return numpy.array(x, copy=True, dtype=dtype)
else:
return numpy.asarray(x, dtype=dtype)
def unique_inverse(self, x):
return numpy.unique(x, return_inverse=True)
def unique_counts(self, x):
return numpy.unique(x, return_counts=True)
def unique_values(self, x):
return numpy.unique(x)
def unique_all(self, x):
return numpy.unique(
x, return_index=True, return_inverse=True, return_counts=True
)
def concat(self, arrays, *, axis=None):
return numpy.concatenate(arrays, axis=axis)
def reshape(self, x, shape, *, copy=None):
"""Gives a new shape to an array without changing its data.
The Array API specification requires shape to be a tuple.
https://data-apis.org/array-api/latest/API_specification/generated/array_api.reshape.html
"""
if not isinstance(shape, tuple):
raise TypeError(
f"shape must be a tuple, got {shape!r} of type {type(shape)}"
)
if copy is True:
x = x.copy()
return numpy.reshape(x, shape)
def isdtype(self, dtype, kind):
try:
return isdtype(dtype, kind, xp=self)
except TypeError:
# In older versions of numpy, data types that arise from outside
# numpy like from a Polars Series raise a TypeError.
# e.g. TypeError: Cannot interpret 'Int64' as a data type.
# Therefore, we return False.
# TODO: Remove when minimum supported version of numpy is >= 1.21.
return False
def pow(self, x1, x2):
return numpy.power(x1, x2)
_NUMPY_API_WRAPPER_INSTANCE = _NumPyAPIWrapper()
def _remove_non_arrays(*arrays, remove_none=True, remove_types=(str,)):
"""Filter arrays to exclude None and/or specific types.
Raise ValueError if no arrays are left after filtering.
Sparse arrays are always filtered out.
Parameters
----------
*arrays : array objects
Array objects.
remove_none : bool, default=True
Whether to ignore None objects passed in arrays.
remove_types : tuple or list, default=(str,)
Types to ignore in the arrays.
Returns
-------
filtered_arrays : list
List of arrays filtered as requested. An empty list is returned if no input
passes the filters.
"""
filtered_arrays = []
remove_types = tuple(remove_types)
for array in arrays:
if remove_none and array is None:
continue
if isinstance(array, remove_types):
continue
if sp.issparse(array):
continue
filtered_arrays.append(array)
return filtered_arrays
def get_namespace(*arrays, remove_none=True, remove_types=(str,), xp=None):
"""Get namespace of arrays.
Introspect `arrays` arguments and return their common Array API compatible
namespace object, if any.
Note that sparse arrays are filtered by default.
See: https://numpy.org/neps/nep-0047-array-api-standard.html
If `arrays` are regular numpy arrays, an instance of the `_NumPyAPIWrapper`
compatibility wrapper is returned instead.
Namespace support is not enabled by default. To enabled it call:
sklearn.set_config(array_api_dispatch=True)
or:
with sklearn.config_context(array_api_dispatch=True):
# your code here
Otherwise an instance of the `_NumPyAPIWrapper` compatibility wrapper is
always returned irrespective of the fact that arrays implement the
`__array_namespace__` protocol or not.
Note that if no arrays pass the set filters, ``_NUMPY_API_WRAPPER_INSTANCE, False``
is returned.
Parameters
----------
*arrays : array objects
Array objects.
remove_none : bool, default=True
Whether to ignore None objects passed in arrays.
remove_types : tuple or list, default=(str,)
Types to ignore in the arrays.
xp : module, default=None
Precomputed array namespace module. When passed, typically from a caller
that has already performed inspection of its own inputs, skips array
namespace inspection.
Returns
-------
namespace : module
Namespace shared by array objects. If any of the `arrays` are not arrays,
the namespace defaults to NumPy.
is_array_api_compliant : bool
True if the arrays are containers that implement the Array API spec.
Always False when array_api_dispatch=False.
"""
array_api_dispatch = get_config()["array_api_dispatch"]
if not array_api_dispatch:
if xp is not None:
return xp, False
else:
return _NUMPY_API_WRAPPER_INSTANCE, False
if xp is not None:
return xp, True
arrays = _remove_non_arrays(
*arrays,
remove_none=remove_none,
remove_types=remove_types,
)
if not arrays:
return _NUMPY_API_WRAPPER_INSTANCE, False
_check_array_api_dispatch(array_api_dispatch)
# array-api-compat is a required dependency of scikit-learn only when
# configuring `array_api_dispatch=True`. Its import should therefore be
# protected by _check_array_api_dispatch to display an informative error
# message in case it is missing.
import array_api_compat
namespace, is_array_api_compliant = array_api_compat.get_namespace(*arrays), True
if namespace.__name__ == "array_api_strict" and hasattr(
namespace, "set_array_api_strict_flags"
):
namespace.set_array_api_strict_flags(api_version="2023.12")
return namespace, is_array_api_compliant
def get_namespace_and_device(*array_list, remove_none=True, remove_types=(str,)):
"""Combination into one single function of `get_namespace` and `device`.
Parameters
----------
*array_list : array objects
Array objects.
remove_none : bool, default=True
Whether to ignore None objects passed in arrays.
remove_types : tuple or list, default=(str,)
Types to ignore in the arrays.
Returns
-------
namespace : module
Namespace shared by array objects. If any of the `arrays` are not arrays,
the namespace defaults to NumPy.
is_array_api_compliant : bool
True if the arrays are containers that implement the Array API spec.
Always False when array_api_dispatch=False.
device : device
`device` object (see the "Device Support" section of the array API spec).
"""
array_list = _remove_non_arrays(
*array_list,
remove_none=remove_none,
remove_types=remove_types,
)
skip_remove_kwargs = dict(remove_none=False, remove_types=[])
xp, is_array_api = get_namespace(*array_list, **skip_remove_kwargs)
arrays_device = device(*array_list, **skip_remove_kwargs)
if is_array_api:
return xp, is_array_api, arrays_device
else:
return xp, False, arrays_device
def _expit(X, xp=None):
xp, _ = get_namespace(X, xp=xp)
if _is_numpy_namespace(xp):
return xp.asarray(special.expit(numpy.asarray(X)))
return 1.0 / (1.0 + xp.exp(-X))
def _fill_or_add_to_diagonal(array, value, xp, add_value=True, wrap=False):
"""Implementation to facilitate adding or assigning specified values to the
diagonal of a 2-d array.
If ``add_value`` is `True` then the values will be added to the diagonal
elements otherwise the values will be assigned to the diagonal elements.
By default, ``add_value`` is set to `True. This is currently only
supported for 2-d arrays.
The implementation is taken from the `numpy.fill_diagonal` function:
https://github.com/numpy/numpy/blob/v2.0.0/numpy/lib/_index_tricks_impl.py#L799-L929
"""
if array.ndim != 2:
raise ValueError(
f"array should be 2-d. Got array with shape {tuple(array.shape)}"
)
value = xp.asarray(value, dtype=array.dtype, device=device(array))
end = None
# Explicit, fast formula for the common case. For 2-d arrays, we
# accept rectangular ones.
step = array.shape[1] + 1
if not wrap:
end = array.shape[1] * array.shape[1]
array_flat = xp.reshape(array, (-1,))
if add_value:
array_flat[:end:step] += value
else:
array_flat[:end:step] = value
def _max_precision_float_dtype(xp, device):
"""Return the float dtype with the highest precision supported by the device."""
# TODO: Update to use `__array_namespace__info__()` from array-api v2023.12
# when/if that becomes more widespread.
xp_name = xp.__name__
if xp_name in {"array_api_compat.torch", "torch"} and (
str(device).startswith("mps")
): # pragma: no cover
return xp.float32
return xp.float64
def _find_matching_floating_dtype(*arrays, xp):
"""Find a suitable floating point dtype when computing with arrays.
If any of the arrays are floating point, return the dtype with the highest
precision by following official type promotion rules:
https://data-apis.org/array-api/latest/API_specification/type_promotion.html
If there are no floating point input arrays (all integral inputs for
instance), return the default floating point dtype for the namespace.
"""
dtyped_arrays = [a for a in arrays if hasattr(a, "dtype")]
floating_dtypes = [
a.dtype for a in dtyped_arrays if xp.isdtype(a.dtype, "real floating")
]
if floating_dtypes:
# Return the floating dtype with the highest precision:
return xp.result_type(*floating_dtypes)
# If none of the input arrays have a floating point dtype, they must be all
# integer arrays or containers of Python scalars: return the default
# floating point dtype for the namespace (implementation specific).
return xp.asarray(0.0).dtype
def _average(a, axis=None, weights=None, normalize=True, xp=None):
"""Partial port of np.average to support the Array API.
It does a best effort at mimicking the return dtype rule described at
https://numpy.org/doc/stable/reference/generated/numpy.average.html but
only for the common cases needed in scikit-learn.
"""
xp, _, device_ = get_namespace_and_device(a, weights)
if _is_numpy_namespace(xp):
if normalize:
return xp.asarray(numpy.average(a, axis=axis, weights=weights))
elif axis is None and weights is not None:
return xp.asarray(numpy.dot(a, weights))
a = xp.asarray(a, device=device_)
if weights is not None:
weights = xp.asarray(weights, device=device_)
if weights is not None and a.shape != weights.shape:
if axis is None:
raise TypeError(
f"Axis must be specified when the shape of a {tuple(a.shape)} and "
f"weights {tuple(weights.shape)} differ."
)
if tuple(weights.shape) != (a.shape[axis],):
raise ValueError(
f"Shape of weights weights.shape={tuple(weights.shape)} must be "
f"consistent with a.shape={tuple(a.shape)} and {axis=}."
)
# If weights are 1D, add singleton dimensions for broadcasting
shape = [1] * a.ndim
shape[axis] = a.shape[axis]
weights = xp.reshape(weights, shape)
if xp.isdtype(a.dtype, "complex floating"):
raise NotImplementedError(
"Complex floating point values are not supported by average."
)
if weights is not None and xp.isdtype(weights.dtype, "complex floating"):
raise NotImplementedError(
"Complex floating point values are not supported by average."
)
output_dtype = _find_matching_floating_dtype(a, weights, xp=xp)
a = xp.astype(a, output_dtype)
if weights is None:
return (xp.mean if normalize else xp.sum)(a, axis=axis)
weights = xp.astype(weights, output_dtype)
sum_ = xp.sum(xp.multiply(a, weights), axis=axis)
if not normalize:
return sum_
scale = xp.sum(weights, axis=axis)
if xp.any(scale == 0.0):
raise ZeroDivisionError("Weights sum to zero, can't be normalized")
return sum_ / scale
def _nanmin(X, axis=None, xp=None):
# TODO: refactor once nan-aware reductions are standardized:
# https://github.com/data-apis/array-api/issues/621
xp, _ = get_namespace(X, xp=xp)
if _is_numpy_namespace(xp):
return xp.asarray(numpy.nanmin(X, axis=axis))
else:
mask = xp.isnan(X)
X = xp.min(xp.where(mask, xp.asarray(+xp.inf, device=device(X)), X), axis=axis)
# Replace Infs from all NaN slices with NaN again
mask = xp.all(mask, axis=axis)
if xp.any(mask):
X = xp.where(mask, xp.asarray(xp.nan), X)
return X
def _nanmax(X, axis=None, xp=None):
# TODO: refactor once nan-aware reductions are standardized:
# https://github.com/data-apis/array-api/issues/621
xp, _ = get_namespace(X, xp=xp)
if _is_numpy_namespace(xp):
return xp.asarray(numpy.nanmax(X, axis=axis))
else:
mask = xp.isnan(X)
X = xp.max(xp.where(mask, xp.asarray(-xp.inf, device=device(X)), X), axis=axis)
# Replace Infs from all NaN slices with NaN again
mask = xp.all(mask, axis=axis)
if xp.any(mask):
X = xp.where(mask, xp.asarray(xp.nan), X)
return X
def _asarray_with_order(
array, dtype=None, order=None, copy=None, *, xp=None, device=None
):
"""Helper to support the order kwarg only for NumPy-backed arrays
Memory layout parameter `order` is not exposed in the Array API standard,
however some input validation code in scikit-learn needs to work both
for classes and functions that will leverage Array API only operations
and for code that inherently relies on NumPy backed data containers with
specific memory layout constraints (e.g. our own Cython code). The
purpose of this helper is to make it possible to share code for data
container validation without memory copies for both downstream use cases:
the `order` parameter is only enforced if the input array implementation
is NumPy based, otherwise `order` is just silently ignored.
"""
xp, _ = get_namespace(array, xp=xp)
if _is_numpy_namespace(xp):
# Use NumPy API to support order
if copy is True:
array = numpy.array(array, order=order, dtype=dtype)
else:
array = numpy.asarray(array, order=order, dtype=dtype)
# At this point array is a NumPy ndarray. We convert it to an array
# container that is consistent with the input's namespace.
return xp.asarray(array)
else:
return xp.asarray(array, dtype=dtype, copy=copy, device=device)
def _ravel(array, xp=None):
"""Array API compliant version of np.ravel.
For non numpy namespaces, it just returns a flattened array, that might
be or not be a copy.
"""
xp, _ = get_namespace(array, xp=xp)
if _is_numpy_namespace(xp):
array = numpy.asarray(array)
return xp.asarray(numpy.ravel(array, order="C"))
return xp.reshape(array, shape=(-1,))
def _convert_to_numpy(array, xp):
"""Convert X into a NumPy ndarray on the CPU."""
xp_name = xp.__name__
if xp_name in {"array_api_compat.torch", "torch"}:
return array.cpu().numpy()
elif xp_name in {"array_api_compat.cupy", "cupy"}: # pragma: nocover
return array.get()
return numpy.asarray(array)
def _estimator_with_converted_arrays(estimator, converter):
"""Create new estimator which converting all attributes that are arrays.
The converter is called on all NumPy arrays and arrays that support the
`DLPack interface <https://dmlc.github.io/dlpack/latest/>`__.
Parameters
----------
estimator : Estimator
Estimator to convert
converter : callable
Callable that takes an array attribute and returns the converted array.
Returns
-------
new_estimator : Estimator
Convert estimator
"""
from sklearn.base import clone
new_estimator = clone(estimator)
for key, attribute in vars(estimator).items():
if hasattr(attribute, "__dlpack__") or isinstance(attribute, numpy.ndarray):
attribute = converter(attribute)
setattr(new_estimator, key, attribute)
return new_estimator
def _atol_for_type(dtype_or_dtype_name):
"""Return the absolute tolerance for a given numpy dtype."""
if dtype_or_dtype_name is None:
# If no dtype is specified when running tests for a given namespace, we
# expect the same floating precision level as NumPy's default floating
# point dtype.
dtype_or_dtype_name = numpy.float64
return numpy.finfo(dtype_or_dtype_name).eps * 100
def indexing_dtype(xp):
"""Return a platform-specific integer dtype suitable for indexing.
On 32-bit platforms, this will typically return int32 and int64 otherwise.
Note: using dtype is recommended for indexing transient array
datastructures. For long-lived arrays, such as the fitted attributes of
estimators, it is instead recommended to use platform-independent int32 if
we do not expect to index more 2B elements. Using fixed dtypes simplifies
the handling of serialized models, e.g. to deploy a model fit on a 64-bit
platform to a target 32-bit platform such as WASM/pyodide.
"""
# Currently this is implemented with simple hack that assumes that
# following "may be" statements in the Array API spec always hold:
# > The default integer data type should be the same across platforms, but
# > the default may vary depending on whether Python is 32-bit or 64-bit.
# > The default array index data type may be int32 on 32-bit platforms, but
# > the default should be int64 otherwise.
# https://data-apis.org/array-api/latest/API_specification/data_types.html#default-data-types
# TODO: once sufficiently adopted, we might want to instead rely on the
# newer inspection API: https://github.com/data-apis/array-api/issues/640
return xp.asarray(0).dtype
def _searchsorted(xp, a, v, *, side="left", sorter=None):
# Temporary workaround needed as long as searchsorted is not widely
# adopted by implementers of the Array API spec. This is a quite
# recent addition to the spec:
# https://data-apis.org/array-api/latest/API_specification/generated/array_api.searchsorted.html # noqa
if hasattr(xp, "searchsorted"):
return xp.searchsorted(a, v, side=side, sorter=sorter)
a_np = _convert_to_numpy(a, xp=xp)
v_np = _convert_to_numpy(v, xp=xp)
indices = numpy.searchsorted(a_np, v_np, side=side, sorter=sorter)
return xp.asarray(indices, device=device(a))
def _setdiff1d(ar1, ar2, xp, assume_unique=False):
"""Find the set difference of two arrays.
Return the unique values in `ar1` that are not in `ar2`.
"""
if _is_numpy_namespace(xp):
return xp.asarray(
numpy.setdiff1d(
ar1=ar1,
ar2=ar2,
assume_unique=assume_unique,
)
)
if assume_unique:
ar1 = xp.reshape(ar1, (-1,))
else:
ar1 = xp.unique_values(ar1)
ar2 = xp.unique_values(ar2)
return ar1[_in1d(ar1=ar1, ar2=ar2, xp=xp, assume_unique=True, invert=True)]
def _isin(element, test_elements, xp, assume_unique=False, invert=False):
"""Calculates ``element in test_elements``, broadcasting over `element`
only.
Returns a boolean array of the same shape as `element` that is True
where an element of `element` is in `test_elements` and False otherwise.
"""
if _is_numpy_namespace(xp):
return xp.asarray(
numpy.isin(
element=element,
test_elements=test_elements,
assume_unique=assume_unique,
invert=invert,
)
)
original_element_shape = element.shape
element = xp.reshape(element, (-1,))
test_elements = xp.reshape(test_elements, (-1,))
return xp.reshape(
_in1d(
ar1=element,
ar2=test_elements,
xp=xp,
assume_unique=assume_unique,
invert=invert,
),
original_element_shape,
)
# Note: This is a helper for the functions `_isin` and
# `_setdiff1d`. It is not meant to be called directly.
def _in1d(ar1, ar2, xp, assume_unique=False, invert=False):
"""Checks whether each element of an array is also present in a
second array.
Returns a boolean array the same length as `ar1` that is True
where an element of `ar1` is in `ar2` and False otherwise.
This function has been adapted using the original implementation
present in numpy:
https://github.com/numpy/numpy/blob/v1.26.0/numpy/lib/arraysetops.py#L524-L758
"""
xp, _ = get_namespace(ar1, ar2, xp=xp)
# This code is run to make the code significantly faster