Skip to content

Commit f13bf9b

Browse files
committed
add vqgan loss with codebook statistic eval
1 parent 2b46bcb commit f13bf9b

File tree

1 file changed

+167
-0
lines changed

1 file changed

+167
-0
lines changed

ldm/modules/losses/vqperceptual.py

+167
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,167 @@
1+
import torch
2+
from torch import nn
3+
import torch.nn.functional as F
4+
from einops import repeat
5+
6+
from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
7+
from taming.modules.losses.lpips import LPIPS
8+
from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
9+
10+
11+
def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
12+
assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
13+
loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
14+
loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
15+
loss_real = (weights * loss_real).sum() / weights.sum()
16+
loss_fake = (weights * loss_fake).sum() / weights.sum()
17+
d_loss = 0.5 * (loss_real + loss_fake)
18+
return d_loss
19+
20+
def adopt_weight(weight, global_step, threshold=0, value=0.):
21+
if global_step < threshold:
22+
weight = value
23+
return weight
24+
25+
26+
def measure_perplexity(predicted_indices, n_embed):
27+
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
28+
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
29+
encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
30+
avg_probs = encodings.mean(0)
31+
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
32+
cluster_use = torch.sum(avg_probs > 0)
33+
return perplexity, cluster_use
34+
35+
def l1(x, y):
36+
return torch.abs(x-y)
37+
38+
39+
def l2(x, y):
40+
return torch.pow((x-y), 2)
41+
42+
43+
class VQLPIPSWithDiscriminator(nn.Module):
44+
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
45+
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
46+
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
47+
disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
48+
pixel_loss="l1"):
49+
super().__init__()
50+
assert disc_loss in ["hinge", "vanilla"]
51+
assert perceptual_loss in ["lpips", "clips", "dists"]
52+
assert pixel_loss in ["l1", "l2"]
53+
self.codebook_weight = codebook_weight
54+
self.pixel_weight = pixelloss_weight
55+
if perceptual_loss == "lpips":
56+
print(f"{self.__class__.__name__}: Running with LPIPS.")
57+
self.perceptual_loss = LPIPS().eval()
58+
else:
59+
raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
60+
self.perceptual_weight = perceptual_weight
61+
62+
if pixel_loss == "l1":
63+
self.pixel_loss = l1
64+
else:
65+
self.pixel_loss = l2
66+
67+
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
68+
n_layers=disc_num_layers,
69+
use_actnorm=use_actnorm,
70+
ndf=disc_ndf
71+
).apply(weights_init)
72+
self.discriminator_iter_start = disc_start
73+
if disc_loss == "hinge":
74+
self.disc_loss = hinge_d_loss
75+
elif disc_loss == "vanilla":
76+
self.disc_loss = vanilla_d_loss
77+
else:
78+
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
79+
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
80+
self.disc_factor = disc_factor
81+
self.discriminator_weight = disc_weight
82+
self.disc_conditional = disc_conditional
83+
self.n_classes = n_classes
84+
85+
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
86+
if last_layer is not None:
87+
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
88+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
89+
else:
90+
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
91+
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
92+
93+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
94+
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
95+
d_weight = d_weight * self.discriminator_weight
96+
return d_weight
97+
98+
def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
99+
global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
100+
if not exists(codebook_loss):
101+
codebook_loss = torch.tensor([0.]).to(inputs.device)
102+
#rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
103+
rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
104+
if self.perceptual_weight > 0:
105+
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
106+
rec_loss = rec_loss + self.perceptual_weight * p_loss
107+
else:
108+
p_loss = torch.tensor([0.0])
109+
110+
nll_loss = rec_loss
111+
#nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
112+
nll_loss = torch.mean(nll_loss)
113+
114+
# now the GAN part
115+
if optimizer_idx == 0:
116+
# generator update
117+
if cond is None:
118+
assert not self.disc_conditional
119+
logits_fake = self.discriminator(reconstructions.contiguous())
120+
else:
121+
assert self.disc_conditional
122+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
123+
g_loss = -torch.mean(logits_fake)
124+
125+
try:
126+
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
127+
except RuntimeError:
128+
assert not self.training
129+
d_weight = torch.tensor(0.0)
130+
131+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
132+
loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
133+
134+
log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
135+
"{}/quant_loss".format(split): codebook_loss.detach().mean(),
136+
"{}/nll_loss".format(split): nll_loss.detach().mean(),
137+
"{}/rec_loss".format(split): rec_loss.detach().mean(),
138+
"{}/p_loss".format(split): p_loss.detach().mean(),
139+
"{}/d_weight".format(split): d_weight.detach(),
140+
"{}/disc_factor".format(split): torch.tensor(disc_factor),
141+
"{}/g_loss".format(split): g_loss.detach().mean(),
142+
}
143+
if predicted_indices is not None:
144+
assert self.n_classes is not None
145+
with torch.no_grad():
146+
perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
147+
log[f"{split}/perplexity"] = perplexity
148+
log[f"{split}/cluster_usage"] = cluster_usage
149+
return loss, log
150+
151+
if optimizer_idx == 1:
152+
# second pass for discriminator update
153+
if cond is None:
154+
logits_real = self.discriminator(inputs.contiguous().detach())
155+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
156+
else:
157+
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
158+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
159+
160+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
161+
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
162+
163+
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
164+
"{}/logits_real".format(split): logits_real.detach().mean(),
165+
"{}/logits_fake".format(split): logits_fake.detach().mean()
166+
}
167+
return d_loss, log

0 commit comments

Comments
 (0)