|
| 1 | +using System; |
| 2 | +using System.Collections.Generic; |
| 3 | +using System.Linq; |
| 4 | +using Microsoft.ML.Data; |
| 5 | +using Microsoft.ML.Transforms; |
| 6 | +using Microsoft.ML.Transforms.Conversions; |
| 7 | + |
| 8 | +namespace Microsoft.ML.Samples.Dynamic |
| 9 | +{ |
| 10 | + public class ValueMappingExample |
| 11 | + { |
| 12 | + class SampleInfertDataWithFeatures |
| 13 | + { |
| 14 | + public float Age = 0; |
| 15 | + public string Education = default; |
| 16 | + public string EducationCategory = default; |
| 17 | + } |
| 18 | + |
| 19 | + class SampleInfertDataWithInducedCategory |
| 20 | + { |
| 21 | + public float Age = 0; |
| 22 | + public float Induced = 0.0f; |
| 23 | + public string InducedCategory = default; |
| 24 | + } |
| 25 | + |
| 26 | + class SampleInfertDataWithIntArray |
| 27 | + { |
| 28 | + public float Age = 0; |
| 29 | + public string Education = default; |
| 30 | + public int[] EducationCategory = default; |
| 31 | + } |
| 32 | + |
| 33 | + |
| 34 | + public static void ValueMappingTransform() |
| 35 | + { |
| 36 | + // Create a new ML context, for ML.NET operations. It can be used for exception tracking and logging, |
| 37 | + // as well as the source of randomness. |
| 38 | + var ml = new MLContext(); |
| 39 | + |
| 40 | + // Get a small dataset as an IEnumerable. |
| 41 | + IEnumerable<SamplesUtils.DatasetUtils.SampleInfertData> data = SamplesUtils.DatasetUtils.GetInfertData(); |
| 42 | + var trainData = ml.CreateStreamingDataView(data); |
| 43 | + |
| 44 | + // Preview of the data. |
| 45 | + // |
| 46 | + // Age Case Education induced parity pooled.stratum row_num ... |
| 47 | + // 26.0 1.0 0-5yrs 1.0 6.0 3.0 1.0 ... |
| 48 | + // 42.0 1.0 0-5yrs 1.0 1.0 1.0 2.0 ... |
| 49 | + // 39.0 1.0 12+yrs 2.0 6.0 4.0 3.0 ... |
| 50 | + // 34.0 1.0 0-5yrs 2.0 4.0 2.0 4.0 ... |
| 51 | + // 35.0 1.0 6-11yrs 1.0 3.0 32.0 5.0 ... |
| 52 | + |
| 53 | + StringToStringMappingExample(ml, trainData); |
| 54 | + FloatToStringMappingExample(ml, trainData); |
| 55 | + StringToKeyTypeMappingExample(ml, trainData); |
| 56 | + StringToArrayMappingExample(ml, trainData); |
| 57 | + } |
| 58 | + |
| 59 | + ///<summary> |
| 60 | + /// This example demonstrates the use of the ValueMappingEstimator by mapping string-to-string values. The ValueMappingEstimator uses |
| 61 | + /// level of education as keys to a respective string label which is the value. |
| 62 | + /// The mapping looks like the following: |
| 63 | + /// <list> |
| 64 | + /// <item>0-5yrs -> Cat1</item> |
| 65 | + /// <item>6-11yrs -> Cat2</item> |
| 66 | + /// <item>12+yrs -> Cat3</item> |
| 67 | + /// </list> |
| 68 | + /// </summary> |
| 69 | + public static void StringToStringMappingExample(MLContext ml, IDataView trainData) |
| 70 | + { |
| 71 | + // Creating a list of keys based on the Education values from the dataset |
| 72 | + // These lists are created by hand for the demonstration, but the ValueMappingEstimator does take an IEnumerable. |
| 73 | + var educationKeys = new List<string>() |
| 74 | + { |
| 75 | + "0-5yrs", |
| 76 | + "6-11yrs", |
| 77 | + "12+yrs" |
| 78 | + }; |
| 79 | + |
| 80 | + var educationValues = new List<string>() |
| 81 | + { |
| 82 | + "Cat1", |
| 83 | + "Cat2", |
| 84 | + "Cat3" |
| 85 | + }; |
| 86 | + |
| 87 | + var pipeline = new ValueMappingEstimator<string, string>(ml, educationKeys, educationValues, ("Education", "EducationCategory")); |
| 88 | + |
| 89 | + // The transformed data. |
| 90 | + var transformedData = pipeline.Fit(trainData).Transform(trainData); |
| 91 | + |
| 92 | + // Getting the data of the newly created column as an IEnumerable of SampleInfertDataWithFeatures. |
| 93 | + var featuresColumn = ml.CreateEnumerable<SampleInfertDataWithFeatures>(transformedData, reuseRowObject: false); |
| 94 | + |
| 95 | + Console.WriteLine($"Example of mapping string->string"); |
| 96 | + Console.WriteLine($"Age\tEducation\tEducationLabel"); |
| 97 | + foreach (var featureRow in featuresColumn) |
| 98 | + { |
| 99 | + Console.WriteLine($"{featureRow.Age}\t{featureRow.Education} \t{featureRow.EducationCategory}"); |
| 100 | + } |
| 101 | + |
| 102 | + // Features column obtained post-transformation. |
| 103 | + // |
| 104 | + // Age Education EducationLabel |
| 105 | + // 26 0-5yrs Cat1 |
| 106 | + // 42 0-5yrs Cat1 |
| 107 | + // 39 12+yrs Cat3 |
| 108 | + // 34 0-5yrs Cat1 |
| 109 | + // 35 6-11yrs Cat2 |
| 110 | + } |
| 111 | + |
| 112 | + ///<summary> |
| 113 | + /// This example demonstrates the use of KeyTypes by setting treatValuesAsKeyTypes to true, |
| 114 | + /// <see cref="ValueMappingEstimator.ValueMappingEstimator(IHostEnvironment, IEnumerable{TKey}, IEnumerable{TValue}, bool, (string input, string output)[])")/> to true. |
| 115 | + /// This is useful in cases where you want the output to be integer based rather than the actual value. |
| 116 | + /// |
| 117 | + /// When using KeyTypes as a Value, the ValueMappingEstimator will do one of the following: |
| 118 | + /// 1) If the Value type is an unsigned int or unsigned long, the specified values are used directly as the KeyType values. |
| 119 | + /// 2) If the Value type is not an unsigned int or unsigned long, new KeyType values are generated for each unique value. |
| 120 | + /// |
| 121 | + /// In this example, the Value type is a string. Since we are setting treatValueAsKeyTypes to true, |
| 122 | + /// the ValueMappingEstimator will generate its own KeyType values for each unique string. |
| 123 | + /// As with KeyTypes, they contain the actual Value information as part of the metadata, therefore |
| 124 | + /// we can convert a KeyType back to the actual value the KeyType represents. To demonstrate |
| 125 | + /// the reverse lookup and to confirm the correct value is mapped, a KeyToValueEstimator is added |
| 126 | + /// to the pipeline to convert back to the original value. |
| 127 | + /// </summary> |
| 128 | + public static void StringToKeyTypeMappingExample(MLContext ml, IDataView trainData) |
| 129 | + { |
| 130 | + // Creating a list of keys based on the Education values from the dataset |
| 131 | + // These lists are created by hand for the demonstration, but the ValueMappingEstimator does take an IEnumerable. |
| 132 | + var educationKeys = new List<string>() |
| 133 | + { |
| 134 | + "0-5yrs", |
| 135 | + "6-11yrs", |
| 136 | + "12+yrs" |
| 137 | + }; |
| 138 | + |
| 139 | + // Sample string values |
| 140 | + var educationValues = new List<string>() |
| 141 | + { |
| 142 | + "Cat1", |
| 143 | + "Cat2", |
| 144 | + "Cat3" |
| 145 | + }; |
| 146 | + |
| 147 | + // Generate the ValueMappingEstimator that will output KeyTypes even though our values are strings. |
| 148 | + // The KeyToValueMappingEstimator is added to provide a reverse lookup of the KeyType, converting the KeyType value back |
| 149 | + // to the original value. |
| 150 | + var pipeline = new ValueMappingEstimator<string, string>(ml, educationKeys, educationValues, true, ("Education", "EducationKeyType")) |
| 151 | + .Append(new KeyToValueMappingEstimator(ml, ("EducationKeyType", "EducationCategory"))); |
| 152 | + |
| 153 | + // The transformed data. |
| 154 | + var transformedData = pipeline.Fit(trainData).Transform(trainData); |
| 155 | + |
| 156 | + // Getting the data of the newly created column as an IEnumerable of SampleInfertDataWithFeatures. |
| 157 | + var featuresColumn = ml.CreateEnumerable<SampleInfertDataWithFeatures>(transformedData, reuseRowObject: false); |
| 158 | + |
| 159 | + Console.WriteLine($"Example of mapping string->keytype"); |
| 160 | + Console.WriteLine($"Age\tEducation\tEducationLabel"); |
| 161 | + foreach (var featureRow in featuresColumn) |
| 162 | + { |
| 163 | + Console.WriteLine($"{featureRow.Age}\t{featureRow.Education} \t{featureRow.EducationCategory}"); |
| 164 | + } |
| 165 | + |
| 166 | + // Features column obtained post-transformation. |
| 167 | + // |
| 168 | + // Age Education EducationLabel |
| 169 | + // 26 0-5yrs Cat1 |
| 170 | + // 42 0-5yrs Cat1 |
| 171 | + // 39 12+yrs Cat3 |
| 172 | + // 34 0-5yrs Cat1 |
| 173 | + // 35 6-11yrs Cat2 |
| 174 | + } |
| 175 | + |
| 176 | + ///<summary> |
| 177 | + /// This example demonstrates the use of floating types as the key type for ValueMappingEstimator by mapping a float-to-string value. |
| 178 | + /// The mapping looks like the following: |
| 179 | + /// <list> |
| 180 | + /// <item>1.0 -> Cat1</item> |
| 181 | + /// <item>2.0 -> Cat2</item> |
| 182 | + /// </list> |
| 183 | + /// </summary> |
| 184 | + public static void FloatToStringMappingExample(MLContext ml, IDataView trainData) |
| 185 | + { |
| 186 | + // Creating a list of keys based on the induced value from the dataset |
| 187 | + // These lists are created by hand for the demonstration, but the ValueMappingEstimator does take an IEnumerable. |
| 188 | + var inducedKeys = new List<float>() |
| 189 | + { |
| 190 | + 1.0f, |
| 191 | + 2.0f |
| 192 | + }; |
| 193 | + |
| 194 | + // Sample list of associated string values |
| 195 | + var inducedValues = new List<string>() |
| 196 | + { |
| 197 | + "Cat1", |
| 198 | + "Cat2" |
| 199 | + }; |
| 200 | + |
| 201 | + var pipeline = new ValueMappingEstimator<float, string>(ml, inducedKeys, inducedValues, ("Induced", "InducedCategory")); |
| 202 | + |
| 203 | + // The transformed data. |
| 204 | + var transformedData = pipeline.Fit(trainData).Transform(trainData); |
| 205 | + |
| 206 | + // Getting the data of the newly created column as an IEnumerable of SampleInfertDataWithFeatures. |
| 207 | + var featuresColumn = ml.CreateEnumerable<SampleInfertDataWithInducedCategory>(transformedData, reuseRowObject: false); |
| 208 | + |
| 209 | + Console.WriteLine($"Example of mapping float->string"); |
| 210 | + Console.WriteLine($"Age\tInduced\tInducedCategory"); |
| 211 | + foreach (var featureRow in featuresColumn) |
| 212 | + { |
| 213 | + Console.WriteLine($"{featureRow.Age}\t{featureRow.Induced}\t{featureRow.InducedCategory}"); |
| 214 | + } |
| 215 | + |
| 216 | + // Features column obtained post-transformation. |
| 217 | + // |
| 218 | + // Example of mapping float->string |
| 219 | + // Age Induced InducedCategory |
| 220 | + // 26 1 Cat1 |
| 221 | + // 42 1 Cat1 |
| 222 | + // 39 2 Cat2 |
| 223 | + // 34 2 Cat2 |
| 224 | + // 35 1 Cat1 |
| 225 | + } |
| 226 | + |
| 227 | + ///<summary> |
| 228 | + /// This example demonstrates the use arrays as the values for the ValueMappingEstimator. It maps a set of keys that are type string |
| 229 | + /// to a integer arrays of variable length. |
| 230 | + /// The mapping looks like the following: |
| 231 | + /// <list> |
| 232 | + /// <item>0-5yrs -> 1,2,3,4</item> |
| 233 | + /// <item>6-11yrs -> 5,6,7</item> |
| 234 | + /// <item>12+yrs -> 42, 32</item> |
| 235 | + /// </list> |
| 236 | + /// </summary> |
| 237 | + public static void StringToArrayMappingExample(MLContext ml, IDataView trainData) |
| 238 | + { |
| 239 | + // Creating a list of keys based on the Education values from the dataset |
| 240 | + var educationKeys = new List<string>() |
| 241 | + { |
| 242 | + "0-5yrs", |
| 243 | + "6-11yrs", |
| 244 | + "12+yrs" |
| 245 | + }; |
| 246 | + |
| 247 | + // Sample list of associated array values |
| 248 | + var educationValues = new List<int[]>() |
| 249 | + { |
| 250 | + new int[] { 1,2,3,4 }, |
| 251 | + new int[] { 5,6,7 }, |
| 252 | + new int[] { 42, 32 } |
| 253 | + }; |
| 254 | + |
| 255 | + var pipeline = new ValueMappingEstimator<string, int>(ml, educationKeys, educationValues, ("Education", "EducationCategory")); |
| 256 | + |
| 257 | + // The transformed data. |
| 258 | + var transformedData = pipeline.Fit(trainData).Transform(trainData); |
| 259 | + |
| 260 | + // Getting the data of the newly created column as an IEnumerable of SampleInfertDataWithFeatures. |
| 261 | + var featuresColumn = ml.CreateEnumerable<SampleInfertDataWithIntArray>(transformedData, reuseRowObject: false); |
| 262 | + |
| 263 | + Console.WriteLine($"Example of mapping string->array"); |
| 264 | + Console.WriteLine($"Age\tEducation\tEducationLabel"); |
| 265 | + foreach (var featureRow in featuresColumn) |
| 266 | + { |
| 267 | + Console.WriteLine($"{featureRow.Age}\t{featureRow.Education} \t{string.Join(",", featureRow.EducationCategory)}"); |
| 268 | + } |
| 269 | + |
| 270 | + // Features column obtained post-transformation. |
| 271 | + // |
| 272 | + // Example of mapping string->array |
| 273 | + // Age Education EducationLabel |
| 274 | + // 26 0 - 5yrs 1,2,3,4 |
| 275 | + // 42 0 - 5yrs 1,2,3,4 |
| 276 | + // 39 12 + yrs 42,32 |
| 277 | + // 34 0 - 5yrs 1,2,3,4 |
| 278 | + // 35 6 - 11yrs 5,6,7 |
| 279 | + } |
| 280 | + } |
| 281 | +} |
0 commit comments