Skip to content

Commit 7d14105

Browse files
committed
Use libc's lgamma/tgamma instead of custom implementations
1 parent d202b5c commit 7d14105

File tree

1 file changed

+12
-264
lines changed

1 file changed

+12
-264
lines changed

Modules/mathmodule.c

+12-264
Original file line numberDiff line numberDiff line change
@@ -92,16 +92,6 @@ get_math_module_state(PyObject *module)
9292
return (math_module_state *)state;
9393
}
9494

95-
/*
96-
sin(pi*x), giving accurate results for all finite x (especially x
97-
integral or close to an integer). This is here for use in the
98-
reflection formula for the gamma function. It conforms to IEEE
99-
754-2008 for finite arguments, but not for infinities or nans.
100-
*/
101-
102-
static const double pi = 3.141592653589793238462643383279502884197;
103-
static const double logpi = 1.144729885849400174143427351353058711647;
104-
10595
/* Version of PyFloat_AsDouble() with in-line fast paths
10696
for exact floats and integers. Gives a substantial
10797
speed improvement for extracting float arguments.
@@ -124,162 +114,6 @@ static const double logpi = 1.144729885849400174143427351353058711647;
124114
} \
125115
}
126116

127-
static double
128-
m_sinpi(double x)
129-
{
130-
double y, r;
131-
int n;
132-
/* this function should only ever be called for finite arguments */
133-
assert(Py_IS_FINITE(x));
134-
y = fmod(fabs(x), 2.0);
135-
n = (int)round(2.0*y);
136-
assert(0 <= n && n <= 4);
137-
switch (n) {
138-
case 0:
139-
r = sin(pi*y);
140-
break;
141-
case 1:
142-
r = cos(pi*(y-0.5));
143-
break;
144-
case 2:
145-
/* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
146-
-0.0 instead of 0.0 when y == 1.0. */
147-
r = sin(pi*(1.0-y));
148-
break;
149-
case 3:
150-
r = -cos(pi*(y-1.5));
151-
break;
152-
case 4:
153-
r = sin(pi*(y-2.0));
154-
break;
155-
default:
156-
Py_UNREACHABLE();
157-
}
158-
return copysign(1.0, x)*r;
159-
}
160-
161-
/* Implementation of the real gamma function. In extensive but non-exhaustive
162-
random tests, this function proved accurate to within <= 10 ulps across the
163-
entire float domain. Note that accuracy may depend on the quality of the
164-
system math functions, the pow function in particular. Special cases
165-
follow C99 annex F. The parameters and method are tailored to platforms
166-
whose double format is the IEEE 754 binary64 format.
167-
168-
Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
169-
and g=6.024680040776729583740234375; these parameters are amongst those
170-
used by the Boost library. Following Boost (again), we re-express the
171-
Lanczos sum as a rational function, and compute it that way. The
172-
coefficients below were computed independently using MPFR, and have been
173-
double-checked against the coefficients in the Boost source code.
174-
175-
For x < 0.0 we use the reflection formula.
176-
177-
There's one minor tweak that deserves explanation: Lanczos' formula for
178-
Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
179-
values, x+g-0.5 can be represented exactly. However, in cases where it
180-
can't be represented exactly the small error in x+g-0.5 can be magnified
181-
significantly by the pow and exp calls, especially for large x. A cheap
182-
correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
183-
involved in the computation of x+g-0.5 (that is, e = computed value of
184-
x+g-0.5 - exact value of x+g-0.5). Here's the proof:
185-
186-
Correction factor
187-
-----------------
188-
Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
189-
double, and e is tiny. Then:
190-
191-
pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
192-
= pow(y, x-0.5)/exp(y) * C,
193-
194-
where the correction_factor C is given by
195-
196-
C = pow(1-e/y, x-0.5) * exp(e)
197-
198-
Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
199-
200-
C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
201-
202-
But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
203-
204-
pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
205-
206-
Note that for accuracy, when computing r*C it's better to do
207-
208-
r + e*g/y*r;
209-
210-
than
211-
212-
r * (1 + e*g/y);
213-
214-
since the addition in the latter throws away most of the bits of
215-
information in e*g/y.
216-
*/
217-
218-
#define LANCZOS_N 13
219-
static const double lanczos_g = 6.024680040776729583740234375;
220-
static const double lanczos_g_minus_half = 5.524680040776729583740234375;
221-
static const double lanczos_num_coeffs[LANCZOS_N] = {
222-
23531376880.410759688572007674451636754734846804940,
223-
42919803642.649098768957899047001988850926355848959,
224-
35711959237.355668049440185451547166705960488635843,
225-
17921034426.037209699919755754458931112671403265390,
226-
6039542586.3520280050642916443072979210699388420708,
227-
1439720407.3117216736632230727949123939715485786772,
228-
248874557.86205415651146038641322942321632125127801,
229-
31426415.585400194380614231628318205362874684987640,
230-
2876370.6289353724412254090516208496135991145378768,
231-
186056.26539522349504029498971604569928220784236328,
232-
8071.6720023658162106380029022722506138218516325024,
233-
210.82427775157934587250973392071336271166969580291,
234-
2.5066282746310002701649081771338373386264310793408
235-
};
236-
237-
/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
238-
static const double lanczos_den_coeffs[LANCZOS_N] = {
239-
0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
240-
13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
241-
242-
/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
243-
#define NGAMMA_INTEGRAL 23
244-
static const double gamma_integral[NGAMMA_INTEGRAL] = {
245-
1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
246-
3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
247-
1307674368000.0, 20922789888000.0, 355687428096000.0,
248-
6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
249-
51090942171709440000.0, 1124000727777607680000.0,
250-
};
251-
252-
/* Lanczos' sum L_g(x), for positive x */
253-
254-
static double
255-
lanczos_sum(double x)
256-
{
257-
double num = 0.0, den = 0.0;
258-
int i;
259-
assert(x > 0.0);
260-
/* evaluate the rational function lanczos_sum(x). For large
261-
x, the obvious algorithm risks overflow, so we instead
262-
rescale the denominator and numerator of the rational
263-
function by x**(1-LANCZOS_N) and treat this as a
264-
rational function in 1/x. This also reduces the error for
265-
larger x values. The choice of cutoff point (5.0 below) is
266-
somewhat arbitrary; in tests, smaller cutoff values than
267-
this resulted in lower accuracy. */
268-
if (x < 5.0) {
269-
for (i = LANCZOS_N; --i >= 0; ) {
270-
num = num * x + lanczos_num_coeffs[i];
271-
den = den * x + lanczos_den_coeffs[i];
272-
}
273-
}
274-
else {
275-
for (i = 0; i < LANCZOS_N; i++) {
276-
num = num / x + lanczos_num_coeffs[i];
277-
den = den / x + lanczos_den_coeffs[i];
278-
}
279-
}
280-
return num/den;
281-
}
282-
283117
/* Constant for +infinity, generated in the same way as float('inf'). */
284118

285119
static double
@@ -309,113 +143,46 @@ m_nan(void)
309143

310144
#endif
311145

146+
/*
147+
gamma: the real gamma function.
148+
*/
149+
312150
static double
313-
m_tgamma(double x)
151+
m_gamma(double x)
314152
{
315-
double absx, r, y, z, sqrtpow;
316-
317153
/* special cases */
318154
if (!Py_IS_FINITE(x)) {
319155
if (Py_IS_NAN(x) || x > 0.0)
320-
return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
156+
return x; /* gamma(nan) = nan, gamma(inf) = inf */
321157
else {
322158
errno = EDOM;
323-
return Py_NAN; /* tgamma(-inf) = nan, invalid */
159+
return Py_NAN; /* gamma(-inf) = nan, invalid */
324160
}
325161
}
326162
if (x == 0.0) {
327163
errno = EDOM;
328-
/* tgamma(+-0.0) = +-inf, divide-by-zero */
164+
/* gamma(+-0.0) = +-inf, divide-by-zero */
329165
return copysign(Py_HUGE_VAL, x);
330166
}
331167

332168
/* integer arguments */
333169
if (x == floor(x)) {
334170
if (x < 0.0) {
335-
errno = EDOM; /* tgamma(n) = nan, invalid for */
171+
errno = EDOM; /* gamma(n) = nan, invalid for */
336172
return Py_NAN; /* negative integers n */
337173
}
338-
if (x <= NGAMMA_INTEGRAL)
339-
return gamma_integral[(int)x - 1];
340-
}
341-
absx = fabs(x);
342-
343-
/* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
344-
if (absx < 1e-20) {
345-
r = 1.0/x;
346-
if (Py_IS_INFINITY(r))
347-
errno = ERANGE;
348-
return r;
349-
}
350-
351-
/* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
352-
x > 200, and underflows to +-0.0 for x < -200, not a negative
353-
integer. */
354-
if (absx > 200.0) {
355-
if (x < 0.0) {
356-
return 0.0/m_sinpi(x);
357-
}
358-
else {
359-
errno = ERANGE;
360-
return Py_HUGE_VAL;
361-
}
362174
}
363175

364-
y = absx + lanczos_g_minus_half;
365-
/* compute error in sum */
366-
if (absx > lanczos_g_minus_half) {
367-
/* note: the correction can be foiled by an optimizing
368-
compiler that (incorrectly) thinks that an expression like
369-
a + b - a - b can be optimized to 0.0. This shouldn't
370-
happen in a standards-conforming compiler. */
371-
double q = y - absx;
372-
z = q - lanczos_g_minus_half;
373-
}
374-
else {
375-
double q = y - lanczos_g_minus_half;
376-
z = q - absx;
377-
}
378-
z = z * lanczos_g / y;
379-
if (x < 0.0) {
380-
r = -pi / m_sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
381-
r -= z * r;
382-
if (absx < 140.0) {
383-
r /= pow(y, absx - 0.5);
384-
}
385-
else {
386-
sqrtpow = pow(y, absx / 2.0 - 0.25);
387-
r /= sqrtpow;
388-
r /= sqrtpow;
389-
}
390-
}
391-
else {
392-
r = lanczos_sum(absx) / exp(y);
393-
r += z * r;
394-
if (absx < 140.0) {
395-
r *= pow(y, absx - 0.5);
396-
}
397-
else {
398-
sqrtpow = pow(y, absx / 2.0 - 0.25);
399-
r *= sqrtpow;
400-
r *= sqrtpow;
401-
}
402-
}
403-
if (Py_IS_INFINITY(r))
404-
errno = ERANGE;
405-
return r;
176+
return tgamma(x);
406177
}
407178

408179
/*
409180
lgamma: natural log of the absolute value of the Gamma function.
410-
For large arguments, Lanczos' formula works extremely well here.
411181
*/
412182

413183
static double
414184
m_lgamma(double x)
415185
{
416-
double r;
417-
double absx;
418-
419186
/* special cases */
420187
if (!Py_IS_FINITE(x)) {
421188
if (Py_IS_NAN(x))
@@ -430,28 +197,9 @@ m_lgamma(double x)
430197
errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
431198
return Py_HUGE_VAL; /* integers n <= 0 */
432199
}
433-
else {
434-
return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
435-
}
436200
}
437201

438-
absx = fabs(x);
439-
/* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
440-
if (absx < 1e-20)
441-
return -log(absx);
442-
443-
/* Lanczos' formula. We could save a fraction of a ulp in accuracy by
444-
having a second set of numerator coefficients for lanczos_sum that
445-
absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
446-
subtraction below; it's probably not worth it. */
447-
r = log(lanczos_sum(absx)) - lanczos_g;
448-
r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
449-
if (x < 0.0)
450-
/* Use reflection formula to get value for negative x. */
451-
r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r;
452-
if (Py_IS_INFINITY(r))
453-
errno = ERANGE;
454-
return r;
202+
return lgamma(x);
455203
}
456204

457205
/*
@@ -1159,7 +907,7 @@ math_floor(PyObject *module, PyObject *number)
1159907
return PyLong_FromDouble(floor(x));
1160908
}
1161909

1162-
FUNC1A(gamma, m_tgamma,
910+
FUNC1A(gamma, m_gamma,
1163911
"gamma($module, x, /)\n--\n\n"
1164912
"Gamma function at x.")
1165913
FUNC1A(lgamma, m_lgamma,

0 commit comments

Comments
 (0)