@@ -92,16 +92,6 @@ get_math_module_state(PyObject *module)
92
92
return (math_module_state * )state ;
93
93
}
94
94
95
- /*
96
- sin(pi*x), giving accurate results for all finite x (especially x
97
- integral or close to an integer). This is here for use in the
98
- reflection formula for the gamma function. It conforms to IEEE
99
- 754-2008 for finite arguments, but not for infinities or nans.
100
- */
101
-
102
- static const double pi = 3.141592653589793238462643383279502884197 ;
103
- static const double logpi = 1.144729885849400174143427351353058711647 ;
104
-
105
95
/* Version of PyFloat_AsDouble() with in-line fast paths
106
96
for exact floats and integers. Gives a substantial
107
97
speed improvement for extracting float arguments.
@@ -124,162 +114,6 @@ static const double logpi = 1.144729885849400174143427351353058711647;
124
114
} \
125
115
}
126
116
127
- static double
128
- m_sinpi (double x )
129
- {
130
- double y , r ;
131
- int n ;
132
- /* this function should only ever be called for finite arguments */
133
- assert (Py_IS_FINITE (x ));
134
- y = fmod (fabs (x ), 2.0 );
135
- n = (int )round (2.0 * y );
136
- assert (0 <= n && n <= 4 );
137
- switch (n ) {
138
- case 0 :
139
- r = sin (pi * y );
140
- break ;
141
- case 1 :
142
- r = cos (pi * (y - 0.5 ));
143
- break ;
144
- case 2 :
145
- /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
146
- -0.0 instead of 0.0 when y == 1.0. */
147
- r = sin (pi * (1.0 - y ));
148
- break ;
149
- case 3 :
150
- r = - cos (pi * (y - 1.5 ));
151
- break ;
152
- case 4 :
153
- r = sin (pi * (y - 2.0 ));
154
- break ;
155
- default :
156
- Py_UNREACHABLE ();
157
- }
158
- return copysign (1.0 , x )* r ;
159
- }
160
-
161
- /* Implementation of the real gamma function. In extensive but non-exhaustive
162
- random tests, this function proved accurate to within <= 10 ulps across the
163
- entire float domain. Note that accuracy may depend on the quality of the
164
- system math functions, the pow function in particular. Special cases
165
- follow C99 annex F. The parameters and method are tailored to platforms
166
- whose double format is the IEEE 754 binary64 format.
167
-
168
- Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
169
- and g=6.024680040776729583740234375; these parameters are amongst those
170
- used by the Boost library. Following Boost (again), we re-express the
171
- Lanczos sum as a rational function, and compute it that way. The
172
- coefficients below were computed independently using MPFR, and have been
173
- double-checked against the coefficients in the Boost source code.
174
-
175
- For x < 0.0 we use the reflection formula.
176
-
177
- There's one minor tweak that deserves explanation: Lanczos' formula for
178
- Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
179
- values, x+g-0.5 can be represented exactly. However, in cases where it
180
- can't be represented exactly the small error in x+g-0.5 can be magnified
181
- significantly by the pow and exp calls, especially for large x. A cheap
182
- correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
183
- involved in the computation of x+g-0.5 (that is, e = computed value of
184
- x+g-0.5 - exact value of x+g-0.5). Here's the proof:
185
-
186
- Correction factor
187
- -----------------
188
- Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
189
- double, and e is tiny. Then:
190
-
191
- pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
192
- = pow(y, x-0.5)/exp(y) * C,
193
-
194
- where the correction_factor C is given by
195
-
196
- C = pow(1-e/y, x-0.5) * exp(e)
197
-
198
- Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
199
-
200
- C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
201
-
202
- But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
203
-
204
- pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
205
-
206
- Note that for accuracy, when computing r*C it's better to do
207
-
208
- r + e*g/y*r;
209
-
210
- than
211
-
212
- r * (1 + e*g/y);
213
-
214
- since the addition in the latter throws away most of the bits of
215
- information in e*g/y.
216
- */
217
-
218
- #define LANCZOS_N 13
219
- static const double lanczos_g = 6.024680040776729583740234375 ;
220
- static const double lanczos_g_minus_half = 5.524680040776729583740234375 ;
221
- static const double lanczos_num_coeffs [LANCZOS_N ] = {
222
- 23531376880.410759688572007674451636754734846804940 ,
223
- 42919803642.649098768957899047001988850926355848959 ,
224
- 35711959237.355668049440185451547166705960488635843 ,
225
- 17921034426.037209699919755754458931112671403265390 ,
226
- 6039542586.3520280050642916443072979210699388420708 ,
227
- 1439720407.3117216736632230727949123939715485786772 ,
228
- 248874557.86205415651146038641322942321632125127801 ,
229
- 31426415.585400194380614231628318205362874684987640 ,
230
- 2876370.6289353724412254090516208496135991145378768 ,
231
- 186056.26539522349504029498971604569928220784236328 ,
232
- 8071.6720023658162106380029022722506138218516325024 ,
233
- 210.82427775157934587250973392071336271166969580291 ,
234
- 2.5066282746310002701649081771338373386264310793408
235
- };
236
-
237
- /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
238
- static const double lanczos_den_coeffs [LANCZOS_N ] = {
239
- 0.0 , 39916800.0 , 120543840.0 , 150917976.0 , 105258076.0 , 45995730.0 ,
240
- 13339535.0 , 2637558.0 , 357423.0 , 32670.0 , 1925.0 , 66.0 , 1.0 };
241
-
242
- /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
243
- #define NGAMMA_INTEGRAL 23
244
- static const double gamma_integral [NGAMMA_INTEGRAL ] = {
245
- 1.0 , 1.0 , 2.0 , 6.0 , 24.0 , 120.0 , 720.0 , 5040.0 , 40320.0 , 362880.0 ,
246
- 3628800.0 , 39916800.0 , 479001600.0 , 6227020800.0 , 87178291200.0 ,
247
- 1307674368000.0 , 20922789888000.0 , 355687428096000.0 ,
248
- 6402373705728000.0 , 121645100408832000.0 , 2432902008176640000.0 ,
249
- 51090942171709440000.0 , 1124000727777607680000.0 ,
250
- };
251
-
252
- /* Lanczos' sum L_g(x), for positive x */
253
-
254
- static double
255
- lanczos_sum (double x )
256
- {
257
- double num = 0.0 , den = 0.0 ;
258
- int i ;
259
- assert (x > 0.0 );
260
- /* evaluate the rational function lanczos_sum(x). For large
261
- x, the obvious algorithm risks overflow, so we instead
262
- rescale the denominator and numerator of the rational
263
- function by x**(1-LANCZOS_N) and treat this as a
264
- rational function in 1/x. This also reduces the error for
265
- larger x values. The choice of cutoff point (5.0 below) is
266
- somewhat arbitrary; in tests, smaller cutoff values than
267
- this resulted in lower accuracy. */
268
- if (x < 5.0 ) {
269
- for (i = LANCZOS_N ; -- i >= 0 ; ) {
270
- num = num * x + lanczos_num_coeffs [i ];
271
- den = den * x + lanczos_den_coeffs [i ];
272
- }
273
- }
274
- else {
275
- for (i = 0 ; i < LANCZOS_N ; i ++ ) {
276
- num = num / x + lanczos_num_coeffs [i ];
277
- den = den / x + lanczos_den_coeffs [i ];
278
- }
279
- }
280
- return num /den ;
281
- }
282
-
283
117
/* Constant for +infinity, generated in the same way as float('inf'). */
284
118
285
119
static double
@@ -309,113 +143,46 @@ m_nan(void)
309
143
310
144
#endif
311
145
146
+ /*
147
+ gamma: the real gamma function.
148
+ */
149
+
312
150
static double
313
- m_tgamma (double x )
151
+ m_gamma (double x )
314
152
{
315
- double absx , r , y , z , sqrtpow ;
316
-
317
153
/* special cases */
318
154
if (!Py_IS_FINITE (x )) {
319
155
if (Py_IS_NAN (x ) || x > 0.0 )
320
- return x ; /* tgamma (nan) = nan, tgamma (inf) = inf */
156
+ return x ; /* gamma (nan) = nan, gamma (inf) = inf */
321
157
else {
322
158
errno = EDOM ;
323
- return Py_NAN ; /* tgamma (-inf) = nan, invalid */
159
+ return Py_NAN ; /* gamma (-inf) = nan, invalid */
324
160
}
325
161
}
326
162
if (x == 0.0 ) {
327
163
errno = EDOM ;
328
- /* tgamma (+-0.0) = +-inf, divide-by-zero */
164
+ /* gamma (+-0.0) = +-inf, divide-by-zero */
329
165
return copysign (Py_HUGE_VAL , x );
330
166
}
331
167
332
168
/* integer arguments */
333
169
if (x == floor (x )) {
334
170
if (x < 0.0 ) {
335
- errno = EDOM ; /* tgamma (n) = nan, invalid for */
171
+ errno = EDOM ; /* gamma (n) = nan, invalid for */
336
172
return Py_NAN ; /* negative integers n */
337
173
}
338
- if (x <= NGAMMA_INTEGRAL )
339
- return gamma_integral [(int )x - 1 ];
340
- }
341
- absx = fabs (x );
342
-
343
- /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
344
- if (absx < 1e-20 ) {
345
- r = 1.0 /x ;
346
- if (Py_IS_INFINITY (r ))
347
- errno = ERANGE ;
348
- return r ;
349
- }
350
-
351
- /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
352
- x > 200, and underflows to +-0.0 for x < -200, not a negative
353
- integer. */
354
- if (absx > 200.0 ) {
355
- if (x < 0.0 ) {
356
- return 0.0 /m_sinpi (x );
357
- }
358
- else {
359
- errno = ERANGE ;
360
- return Py_HUGE_VAL ;
361
- }
362
174
}
363
175
364
- y = absx + lanczos_g_minus_half ;
365
- /* compute error in sum */
366
- if (absx > lanczos_g_minus_half ) {
367
- /* note: the correction can be foiled by an optimizing
368
- compiler that (incorrectly) thinks that an expression like
369
- a + b - a - b can be optimized to 0.0. This shouldn't
370
- happen in a standards-conforming compiler. */
371
- double q = y - absx ;
372
- z = q - lanczos_g_minus_half ;
373
- }
374
- else {
375
- double q = y - lanczos_g_minus_half ;
376
- z = q - absx ;
377
- }
378
- z = z * lanczos_g / y ;
379
- if (x < 0.0 ) {
380
- r = - pi / m_sinpi (absx ) / absx * exp (y ) / lanczos_sum (absx );
381
- r -= z * r ;
382
- if (absx < 140.0 ) {
383
- r /= pow (y , absx - 0.5 );
384
- }
385
- else {
386
- sqrtpow = pow (y , absx / 2.0 - 0.25 );
387
- r /= sqrtpow ;
388
- r /= sqrtpow ;
389
- }
390
- }
391
- else {
392
- r = lanczos_sum (absx ) / exp (y );
393
- r += z * r ;
394
- if (absx < 140.0 ) {
395
- r *= pow (y , absx - 0.5 );
396
- }
397
- else {
398
- sqrtpow = pow (y , absx / 2.0 - 0.25 );
399
- r *= sqrtpow ;
400
- r *= sqrtpow ;
401
- }
402
- }
403
- if (Py_IS_INFINITY (r ))
404
- errno = ERANGE ;
405
- return r ;
176
+ return tgamma (x );
406
177
}
407
178
408
179
/*
409
180
lgamma: natural log of the absolute value of the Gamma function.
410
- For large arguments, Lanczos' formula works extremely well here.
411
181
*/
412
182
413
183
static double
414
184
m_lgamma (double x )
415
185
{
416
- double r ;
417
- double absx ;
418
-
419
186
/* special cases */
420
187
if (!Py_IS_FINITE (x )) {
421
188
if (Py_IS_NAN (x ))
@@ -430,28 +197,9 @@ m_lgamma(double x)
430
197
errno = EDOM ; /* lgamma(n) = inf, divide-by-zero for */
431
198
return Py_HUGE_VAL ; /* integers n <= 0 */
432
199
}
433
- else {
434
- return 0.0 ; /* lgamma(1) = lgamma(2) = 0.0 */
435
- }
436
200
}
437
201
438
- absx = fabs (x );
439
- /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
440
- if (absx < 1e-20 )
441
- return - log (absx );
442
-
443
- /* Lanczos' formula. We could save a fraction of a ulp in accuracy by
444
- having a second set of numerator coefficients for lanczos_sum that
445
- absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
446
- subtraction below; it's probably not worth it. */
447
- r = log (lanczos_sum (absx )) - lanczos_g ;
448
- r += (absx - 0.5 ) * (log (absx + lanczos_g - 0.5 ) - 1 );
449
- if (x < 0.0 )
450
- /* Use reflection formula to get value for negative x. */
451
- r = logpi - log (fabs (m_sinpi (absx ))) - log (absx ) - r ;
452
- if (Py_IS_INFINITY (r ))
453
- errno = ERANGE ;
454
- return r ;
202
+ return lgamma (x );
455
203
}
456
204
457
205
/*
@@ -1159,7 +907,7 @@ math_floor(PyObject *module, PyObject *number)
1159
907
return PyLong_FromDouble (floor (x ));
1160
908
}
1161
909
1162
- FUNC1A (gamma , m_tgamma ,
910
+ FUNC1A (gamma , m_gamma ,
1163
911
"gamma($module, x, /)\n--\n\n"
1164
912
"Gamma function at x." )
1165
913
FUNC1A (lgamma , m_lgamma ,
0 commit comments