-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtransformer_lr_scheduler.py
93 lines (78 loc) · 3.39 KB
/
transformer_lr_scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# MIT License
#
# Copyright (c) 2021 Soohwan Kim
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import math
import torch
from typing import Optional
from torch.optim import Optimizer
from lr_scheduler.lr_scheduler import LearningRateScheduler
class TransformerLRScheduler(LearningRateScheduler):
r"""
Transformer Learning Rate Scheduler proposed in "Attention Is All You Need"
Args:
optimizer (Optimizer): Optimizer.
init_lr (float): Initial learning rate.
peak_lr (float): Maximum learning rate.
final_lr (float): Final learning rate.
final_lr_scale (float): Final learning rate scale
warmup_steps (int): Warmup the learning rate linearly for the first N updates
decay_steps (int): Steps in decay stages
"""
def __init__(
self,
optimizer: Optimizer,
init_lr: float,
peak_lr: float,
final_lr: float,
final_lr_scale: float,
warmup_steps: int,
decay_steps: int,
) -> None:
assert isinstance(warmup_steps, int), "warmup_steps should be inteager type"
assert isinstance(decay_steps, int), "total_steps should be inteager type"
super(TransformerLRScheduler, self).__init__(optimizer, init_lr)
self.final_lr = final_lr
self.peak_lr = peak_lr
self.warmup_steps = warmup_steps
self.decay_steps = decay_steps
self.warmup_rate = self.peak_lr / self.warmup_steps
self.decay_factor = -math.log(final_lr_scale) / self.decay_steps
self.init_lr = init_lr
self.update_steps = 0
def _decide_stage(self):
if self.update_steps < self.warmup_steps:
return 0, self.update_steps
if self.warmup_steps <= self.update_steps < self.warmup_steps + self.decay_steps:
return 1, self.update_steps - self.warmup_steps
return 2, None
def step(self, val_loss: Optional[torch.FloatTensor] = None):
self.update_steps += 1
stage, steps_in_stage = self._decide_stage()
if stage == 0:
self.lr = self.update_steps * self.warmup_rate
elif stage == 1:
self.lr = self.peak_lr * math.exp(-self.decay_factor * steps_in_stage)
elif stage == 2:
self.lr = self.final_lr
else:
raise ValueError("Undefined stage")
self.set_lr(self.optimizer, self.lr)
return self.lr