-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathwarmup_reduce_lr_on_plateau_scheduler.py
88 lines (78 loc) · 3.3 KB
/
warmup_reduce_lr_on_plateau_scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# MIT License
#
# Copyright (c) 2021 Soohwan Kim
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from torch.optim import Optimizer
from typing import Optional
from lr_scheduler.lr_scheduler import LearningRateScheduler
from lr_scheduler.reduce_lr_on_plateau_lr_scheduler import ReduceLROnPlateauScheduler
from lr_scheduler.warmup_lr_scheduler import WarmupLRScheduler
class WarmupReduceLROnPlateauScheduler(LearningRateScheduler):
r"""
Warmup learning rate until `warmup_steps` and reduce learning rate on plateau after.
Args:
optimizer (Optimizer): wrapped optimizer.
init_lr (float): Initial learning rate.
peak_lr (float): Maximum learning rate.
warmup_steps (int): Warmup the learning rate linearly for the first N updates.
patience (int): Number of epochs with no improvement after which learning rate will be reduced.
factor (float): Factor by which the learning rate will be reduced. new_lr = lr * factor.
"""
def __init__(
self,
optimizer: Optimizer,
init_lr: float,
peak_lr: float,
warmup_steps: int,
patience: int = 1,
factor: float = 0.3,
) -> None:
super(WarmupReduceLROnPlateauScheduler, self).__init__(optimizer, init_lr)
self.warmup_steps = warmup_steps
self.update_steps = 0
self.warmup_rate = (peak_lr - init_lr) / self.warmup_steps \
if self.warmup_steps != 0 else 0
self.schedulers = [
WarmupLRScheduler(
optimizer=optimizer,
init_lr=init_lr,
peak_lr=peak_lr,
warmup_steps=warmup_steps,
),
ReduceLROnPlateauScheduler(
optimizer=optimizer,
lr=peak_lr,
patience=patience,
factor=factor,
),
]
def _decide_stage(self):
if self.update_steps < self.warmup_steps:
return 0, self.update_steps
else:
return 1, None
def step(self, val_loss: Optional[float] = None):
stage, steps_in_stage = self._decide_stage()
if stage == 0:
self.schedulers[0].step()
elif stage == 1:
self.schedulers[1].step(val_loss)
self.update_steps += 1
return self.get_lr()