
Configuration - Kubernetes
This section describes how to configure Spring Cloud Data Flow features, such as deployer
properties, tasks, and which relational database to use.

Feature Toggles
Data Flow server offers specific set of features that can be enabled or disabled when launching.
These features include all the lifecycle operations, REST endpoints (server and client
implementations including Shell and the UI) for:

• Streams

• Tasks

• Schedules

You can enable or disable these features by setting the following boolean environment variables
when launching the Data Flow server:

• SPRING_CLOUD_DATAFLOW_FEATURES_STREAMS_ENABLED

• SPRING_CLOUD_DATAFLOW_FEATURES_TASKS_ENABLED

• SPRING_CLOUD_DATAFLOW_FEATURES_SCHEDULES_ENABLED

By default, all the features are enabled.

The /features REST endpoint provides information on the features that have been enabled and
disabled.

Deployer Properties
You can use the following configuration properties the Kubernetes deployer to customize how
Streams and Tasks are deployed. When deploying with the Data Flow shell, you can use the syntax
deployer.<appName>.kubernetes.<deployerPropertyName>. These properties are also used when
configuring the Kubernetes task platforms in the Data Flow server and Kubernetes platforms in
Skipper for deploying Streams.

Deployer Property Name Description Default Value

namespace Namespace to use environment variable
KUBERNETES_NAMESPACE, otherwise
default

deployment.nodeSelector The node selectors to apply to
the deployment in key:value
format. Multiple node selectors
are comma separated.

<none>

imagePullSecret Secrets for a access a private
registry to pull images.

<none>

1

https://github.com/spring-cloud/spring-cloud-deployer-kubernetes

Deployer Property Name Description Default Value

imagePullPolicy The Image Pull Policy to apply
when pulling images. Valid
options are Always,
IfNotPresent, and Never.

IfNotPresent

livenessProbeDelay Delay in seconds when the
Kubernetes liveness check of
the app container should start
checking its health status.

10

livenessProbePeriod Period in seconds for
performing the Kubernetes
liveness check of the app
container.

60

livenessProbeTimeout Timeout in seconds for the
Kubernetes liveness check of
the app container. If the health
check takes longer than this
value to return it is assumed as
'unavailable'.

2

livenessProbePath Path that app container has to
respond to for liveness check.

<none>

livenessProbePort Port that app container has to
respond on for liveness check.

<none>

startupProbeDelay Delay in seconds when the
Kubernetes startup check of the
app container should start
checking its health status.

30

startupProbePeriod Period in seconds for
performing the Kubernetes
startup check of the app
container.

3

startupProbeFailure Number of probe failures
allowed for the startup probe
before the pod is restarted.

20

startupHttpProbePath Path that app container has to
respond to for startup check.

<none>

startupProbePort Port that app container has to
respond on for startup check.

<none>

readinessProbeDelay Delay in seconds when the
readiness check of the app
container should start checking
if the module is fully up and
running.

10

2

Deployer Property Name Description Default Value

readinessProbePeriod Period in seconds to perform
the readiness check of the app
container.

10

readinessProbeTimeout Timeout in seconds that the app
container has to respond to its
health status during the
readiness check.

2

readinessProbePath Path that app container has to
respond to for readiness check.

<none>

readinessProbePort Port that app container has to
respond on for readiness check.

<none>

probeCredentialsSecret The secret name containing the
credentials to use when
accessing secured probe
endpoints.

<none>

limits.memory The memory limit, maximum
needed value to allocate a pod,
Default unit is mebibytes, 'M'
and 'G" suffixes supported

<none>

limits.cpu The CPU limit, maximum
needed value to allocate a pod

<none>

requests.memory The memory request,
guaranteed needed value to
allocate a pod.

<none>

requests.cpu The CPU request, guaranteed
needed value to allocate a pod.

<none>

statefulSet.volumeClaimTempla
te.storageClassName

Name of the storage class for a
stateful set

<none>

statefulSet.volumeClaimTempla
te.storage

The storage amount. Default
unit is mebibytes, 'M' and 'G"
suffixes supported

<none>

environmentVariables List of environment variables to
set for any deployed app
container

<none>

entryPointStyle Entry point style used for the
Docker image. Used to
determine how to pass in
properties. Can be exec, shell,
and boot

exec

3

Deployer Property Name Description Default Value

createLoadBalancer Create a "LoadBalancer" for the
service created for each app.
This facilitates assignment of
external IP to app.

false

serviceAnnotations Service annotations to set for
the service created for each
application. String of the format
annotation1:value1,annotation2
:value2

<none>

podAnnotations Pod annotations to set for the
pod created for each
deployment. String of the
format
annotation1:value1,annotation2
:value2

<none>

jobAnnotations Job annotations to set for the
pod or job created for a job.
String of the format
annotation1:value1,annotation2
:value2

<none>

minutesToWaitForLoadBalance
r

Time to wait for load balancer
to be available before
attempting delete of service (in
minutes).

5

maxTerminatedErrorRestarts Maximum allowed restarts for
app that fails due to an error or
excessive resource use.

2

maxCrashLoopBackOffRestarts Maximum allowed restarts for
app that is in a
CrashLoopBackOff. Values are
Always, IfNotPresent, Never

IfNotPresent

volumeMounts volume mounts expressed in
YAML format. e.g. [{name:
'testhostpath', mountPath:
'/test/hostPath'}, {name:
'testpvc', mountPath:
'/test/pvc'}, {name:
'testnfs', mountPath:
'/test/nfs'}]

<none>

4

Deployer Property Name Description Default Value

volumes The volumes that a Kubernetes
instance supports specifed in
YAML format. e.g. [{name:
testhostpath, hostPath: {
path:
'/test/override/hostPath'
}},{name: 'testpvc',
persistentVolumeClaim: {
claimName: 'testClaim',
readOnly: 'true' }}, {name:
'testnfs', nfs: { server:
'10.0.0.1:111', path:
'/test/nfs' }}]

<none>

hostNetwork The hostNetwork setting for the
deployments, see
https://kubernetes.io/docs/api-
reference/v1/definitions/#
_v1_podspec

false

createDeployment Create a "Deployment" with a
"Replica Set" instead of a
"Replication Controller".

true

createJob Create a "Job" instead of just a
"Pod" when launching tasks.

false

containerCommand Overrides the default entry
point command with the
provided command and
arguments.

<none>

containerPorts Adds additional ports to expose
on the container.

<none>

createNodePort The explicit port to use when
NodePort is the Service type.

<none>

deploymentServiceAccountNam
e

Service account name used in
app deployments. Note: The
service account name used for
app deployments is derived
from the Data Flow servers
deployment.

<none>

deploymentLabels Additional labels to add to the
deployment in key:value
format. Multiple labels are
comma separated.

<none>

5

https://kubernetes.io/docs/api-reference/v1/definitions/#_v1_podspec
https://kubernetes.io/docs/api-reference/v1/definitions/#_v1_podspec
https://kubernetes.io/docs/api-reference/v1/definitions/#_v1_podspec

Deployer Property Name Description Default Value

bootMajorVersion The Spring Boot major version
to use. Currently only used to
configure Spring Boot version
specific probe paths
automatically. Valid options are
1 or 2.

2

tolerations.key The key to use for the
toleration.

<none>

tolerations.effect The toleration effect. See
https://kubernetes.io/docs/
concepts/configuration/taint-
and-toleration for valid options.

<none>

tolerations.operator The toleration operator. See
https://kubernetes.io/docs/
concepts/configuration/taint-
and-toleration/ for valid
options.

<none>

tolerations.tolerationSeconds The number of seconds defining
how long the pod will stay
bound to the node after a taint
is added.

<none>

tolerations.value The toleration value to apply,
used in conjunction with
operator to select to appropriate
effect.

<none>

secretRefs The name of the secret(s) to
load the entire data contents
into individual environment
variables. Multiple secrets may
be comma separated.

<none>

secretKeyRefs.envVarName The environment variable
name to hold the secret data

<none>

secretKeyRefs.secretName The secret name to access <none>

secretKeyRefs.dataKey The key name to obtain secret
data from

<none>

configMapRefs The name of the ConfigMap(s)
to load the entire data contents
into individual environment
variables. Multiple ConfigMaps
be comma separated.

<none>

6

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

Deployer Property Name Description Default Value

configMapKeyRefs.envVarName The environment variable
name to hold the ConfigMap
data

<none>

configMapKeyRefs.configMapN
ame

The ConfigMap name to access <none>

configMapKeyRefs.dataKey The key name to obtain
ConfigMap data from

<none>

maximumConcurrentTasks The maximum concurrent tasks
allowed for this platform
instance

20

podSecurityContext.runAsUser The numeric user ID to run pod
container processes under

<none>

podSecurityContext.fsGroup The numeric group ID for the
volumes of the pod

<none>

podSecurityContext.supplement
alGroups

The numeric group IDs applied
to the pod container processes,
in addition to the container’s
primary group ID

<none>

podSecurityContext.seccompPr
ofile

The seccomp options to use for
the pod containers expressed in
YAML format. e.g. {
seccompProfile: { type:
'Localhost', localhostProfile:
'my-profiles/profile-
allow.json' }}

<none>

affinity.nodeAffinity The node affinity expressed in
YAML format. e.g. {
requiredDuringSchedulingIgnore
dDuringExecution: {
nodeSelectorTerms: [{
matchExpressions: [{ key:
'kubernetes.io/e2e-az-name',
operator: 'In', values: [
'e2e-az1', 'e2e-az2']}]}]},
preferredDuringSchedulingIgnor
edDuringExecution: [{ weight:
1, preference: {
matchExpressions: [{ key:
'another-node-label-key',
operator: 'In', values: [
'another-node-label-value'
]}]}}]}

<none>

7

Deployer Property Name Description Default Value

affinity.podAffinity The pod affinity expressed in
YAML format. e.g. {
requiredDuringSchedulingIgnore
dDuringExecution: {
labelSelector: [{
matchExpressions: [{ key:
'app', operator: 'In', values:
['store']}]}], topologyKey:
'kubernetes.io/hostnam'},
preferredDuringSchedulingIgnor
edDuringExecution: [{ weight:
1, podAffinityTerm: {
labelSelector: {
matchExpressions: [{ key:
'security', operator: 'In',
values: ['S2']}]},
topologyKey: 'failure-
domain.beta.kubernetes.io/zone
'}}]}

<none>

affinity.podAntiAffinity The pod anti-affinity expressed
in YAML format. e.g. {
requiredDuringSchedulingIgnore
dDuringExecution: {
labelSelector: {
matchExpressions: [{ key:
'app', operator: 'In', values:
['store']}]}], topologyKey:
'kubernetes.io/hostname'},
preferredDuringSchedulingIgnor
edDuringExecution: [{ weight:
1, podAffinityTerm: {
labelSelector: {
matchExpressions: [{ key:
'security', operator: 'In',
values: ['S2']}]},
topologyKey: 'failure-
domain.beta.kubernetes.io/zone
'}}]}

<none>

statefulSetInitContainerImageN
ame

A custom image name to use for
the StatefulSet Init Container

<none>

initContainer An Init Container expressed in
YAML format to be applied to a
pod. e.g. {containerName:
'test', imageName:
'busybox:latest', commands:
['sh', '-c', 'echo hello']}

<none>

8

Deployer Property Name Description Default Value

additionalContainers Additional containers expressed
in YAML format to be applied to
a pod. e.g. [{name: 'c1', image:
'busybox:latest', command:
['sh', '-c', 'echo hello1'],
volumeMounts: [{name: 'test-
volume', mountPath: '/tmp',
readOnly: true}]}, {name:
'c2', image: 'busybox:1.26.1',
command: ['sh', '-c', 'echo
hello2']}]

<none>

Tasks
The Data Flow server is responsible for deploying Tasks. Tasks that are launched by Data Flow
write their state to the same database that is used by the Data Flow server. For Tasks which are
Spring Batch Jobs, the job and step execution data is also stored in this database. As with Skipper,
Tasks can be launched to multiple platforms. When Data Flow is running on Kubernetes, a Task
platfom must be defined. To configure new platform accounts that target Kubernetes, provide an
entry under the spring.cloud.dataflow.task.platform.kubernetes section in your application.yaml
file for via another Spring Boot supported mechanism. In the following example, two Kubernetes
platform accounts named dev and qa are created. The keys such as memory and disk are Cloud
Foundry Deployer Properties.

spring:
 cloud:
 dataflow:
 task:
 platform:
 kubernetes:
 accounts:
 dev:
 namespace: devNamespace
 imagePullPolicy: Always
 entryPointStyle: exec
 limits:
 cpu: 4
 qa:
 namespace: qaNamespace
 imagePullPolicy: IfNotPresent
 entryPointStyle: boot
 limits:
 memory: 2048m

TIP
By defining one platform as default allows you to skip using platformName where its
use would otherwise be required.

9

When launching a task, pass the value of the platform account name using the task launch option
--platformName If you do not pass a value for platformName, the value default will be used.

NOTE
When deploying a task to multiple platforms, the configuration of the task needs to
connect to the same database as the Data Flow Server.

You can configure the Data Flow server that is on Kubernetes to deploy tasks to Cloud Foundry and
Kubernetes. See the section on Cloud Foundry Task Platform Configuration for more information.

Detailed examples for launching and scheduling tasks across multiple platforms, are available in
this section Multiple Platform Support for Tasks on http://dataflow.spring.io.

General Configuration
The Spring Cloud Data Flow server for Kubernetes uses the spring-cloud-kubernetes module to
process secrets that are mounted under /etc/secrets. ConfigMaps must be mounted as
application.yaml in the /config directory that is processed by Spring Boot. To avoid access to the
Kubernetes API server the SPRING_CLOUD_KUBERNETES_CONFIG_ENABLE_API and
SPRING_CLOUD_KUBERNETES_SECRETS_ENABLE_API are set to false.

Using ConfigMap and Secrets

You can pass configuration properties to the Data Flow Server by using Kubernetes ConfigMap and
secrets.

The following example shows one possible configuration, which enables MariaDB and sets a
memory limit:

apiVersion: v1
kind: ConfigMap
metadata:
 name: scdf-server
 labels:
 app: scdf-server
data:
 application.yaml: |-
 spring:
 cloud:
 dataflow:
 task:
 platform:
 kubernetes:
 accounts:
 default:
 limits:
 memory: 1024Mi
 datasource:
 url: jdbc:mariadb://${MARIADB_SERVICE_HOST}:${MARIADB_SERVICE_PORT}/database
 username: root

10

https://dataflow.spring.io/docs/recipes/multi-platform-deployment/
http://dataflow.spring.io
https://github.com/fabric8io/spring-cloud-kubernetes
https://kubernetes.io/docs/tasks/configure-pod-container/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/

 password: ${mariadb-root-password}
 driverClassName: org.mariadb.jdbc.Driver
 testOnBorrow: true
 validationQuery: "SELECT 1"

The preceding example assumes that MariaDB is deployed with mariadb as the service name.
Kubernetes publishes the host and port values of these services as environment variables that we
can use when configuring the apps we deploy.

We prefer to provide the MariaDB connection password in a Secrets file, as the following example
shows:

apiVersion: v1
kind: Secret
metadata:
 name: mariadb
 labels:
 app: mariadb
data:
 mariadb-root-password: eW91cnBhc3N3b3Jk

The password is a base64-encoded value.

Database
A relational database is used to store stream and task definitions as well as the state of executed
tasks. Spring Cloud Data Flow provides schemas for MariaDB, MySQL, Oracle, PostgreSQL, Db2,
SQL Server, and H2. The schema is automatically created when the server starts.

NOTE

The JDBC drivers for MariaDB, MySQL (via the MariaDB driver), PostgreSQL, SQL
Server are available without additional configuration. To use any other database
you need to put the corresponding JDBC driver jar on the classpath of the server as
described here.

To configure a database the following properties must be set:

• spring.datasource.url

• spring.datasource.username

• spring.datasource.password

• spring.datasource.driver-class-name

The username and password are the same regardless of the database. However, the url and driver-
class-name vary per database as follows.

11

Database spring.datasource.url spring.datasource.driver-class-
name

Driver
included

MariaDB 10.4+ jdbc:mariadb://${db-hostname}:${db-port}/${db-
name}

org.mariadb.jdbc.Driver Yes

MySQL 5.7 jdbc:mysql://${db-hostname}:${db-port}/${db-
name}?permitMysqlScheme

org.mariadb.jdbc.Driver Yes

MySQL 8.0+ jdbc:mariadb://${db-hostname}:${db-port}/${db-
name}?allowPublicKeyRetrieval=true&useSSL=false

&autoReconnect=true&permitMysqlScheme
[1]

org.mariadb.jdbc.Driver Yes

PostgresSQL jdbc:postgres://${db-hostname}:${db-port}/${db-
name}

org.postgresql.Driver Yes

SQL Server jdbc:sqlserver://${db-hostname}:${db-
port};databasename=${db-name}&encrypt=false

com.microsoft.sqlserver.jdbc.SQL
ServerDriver

Yes

DB2 jdbc:db2://${db-hostname}:${db-port}/{db-name} com.ibm.db2.jcc.DB2Driver No

Oracle jdbc:oracle:thin:@${db-hostname}:${db-port}/{db-
name}

oracle.jdbc.OracleDriver No

H2

When no other database is configured and the H2 driver has been added to the server classpath
then Spring Cloud Data Flow uses an embedded instance of the H2 database as the default.

NOTE
H2 is good for development purposes but is not recommended for production use
nor is it supported as an external mode.

To use H2 add the com.h2database:h2:2.1.214 JDBC driver to the classpath and do not configure any
other database.

Database configuration

When running in Kubernetes, the database properties are typically set in the ConfigMap. For
instance, if you use MariaDB in addition to a password in the secrets file, you could provide the
following properties in the ConfigMap:

data:
 application.yaml: |-
 spring:
 datasource:
 url: jdbc:mariadb://${MARIADB_SERVICE_HOST}:${MARIADB_SERVICE_PORT}/database
 username: root
 password: ${mariadb-root-password}
 driverClassName: org.mariadb.jdbc.Driver

Similarly, for PostgreSQL you could use the following configuration:

data:
 application.yaml: |-

12

 spring:
 datasource:
 url: jdbc:postgresql://${PGSQL_SERVICE_HOST}:${PGSQL_SERVICE_PORT}/database
 username: root
 password: ${postgres-password}
 driverClassName: org.postgresql.Driver

The following YAML snippet from a Deployment is an example of mounting a ConfigMap as
application.yaml under /config where Spring Boot will process it plus a Secret mounted under
/etc/secrets where it will get picked up by the spring-cloud-kubernetes library due to the
environment variable SPRING_CLOUD_KUBERNETES_SECRETS_PATHS being set to /etc/secrets.

...
 containers:
 - name: scdf-server
 image: springcloud/spring-cloud-dataflow-server:2.5.0.BUILD-SNAPSHOT
 imagePullPolicy: Always
 volumeMounts:
 - name: config
 mountPath: /config
 readOnly: true
 - name: database
 mountPath: /etc/secrets/database
 readOnly: true
 ports:
...
 volumes:
 - name: config
 configMap:
 name: scdf-server
 items:
 - key: application.yaml
 path: application.yaml
 - name: database
 secret:
 secretName: mariadb

You can find migration scripts for specific database types in the spring-cloud-task repo.

Monitoring and Management
We recommend using the kubectl command for troubleshooting streams and tasks.

You can list all artifacts and resources used by using the following command:

kubectl get all,cm,secrets,pvc

13

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-core/src/main/resources/org/springframework/cloud/task/migration

You can list all resources used by a specific application or service by using a label to select
resources. The following command lists all resources used by the mariadb service:

kubectl get all -l app=mariadb

You can get the logs for a specific pod by issuing the following command:

kubectl logs pod <pod-name>

If the pod is continuously getting restarted, you can add -p as an option to see the previous log, as
follows:

kubectl logs -p <pod-name>

You can also tail or follow a log by adding an -f option, as follows:

kubectl logs -f <pod-name>

A useful command to help in troubleshooting issues, such as a container that has a fatal error when
starting up, is to use the describe command, as the following example shows:

kubectl describe pod ticktock-log-0-qnk72

Inspecting Server Logs

You can access the server logs by using the following command:

kubectl get pod -l app=scdf=server
kubectl logs <scdf-server-pod-name>

Streams

Stream applications are deployed with the stream name followed by the name of the application.
For processors and sinks, an instance index is also appended.

To see all the pods that are deployed by the Spring Cloud Data Flow server, you can specify the
role=spring-app label, as follows:

kubectl get pod -l role=spring-app

To see details for a specific application deployment you can use the following command:

14

kubectl describe pod <app-pod-name>

To view the application logs, you can use the following command:

kubectl logs <app-pod-name>

If you would like to tail a log you can use the following command:

kubectl logs -f <app-pod-name>

Tasks

Tasks are launched as bare pods without a replication controller. The pods remain after the tasks
complete, which gives you an opportunity to review the logs.

To see all pods for a specific task, use the following command:

kubectl get pod -l task-name=<task-name>

To review the task logs, use the following command:

kubectl logs <task-pod-name>

You have two options to delete completed pods. You can delete them manually once they are no
longer needed or you can use the Data Flow shell task execution cleanup command to remove the
completed pod for a task execution.

To delete the task pod manually, use the following command:

kubectl delete pod <task-pod-name>

To use the task execution cleanup command, you must first determine the ID for the task execution.
To do so, use the task execution list command, as the following example (with output) shows:

dataflow:>task execution list
╔═════════╤══╤════════════════════════════╤
════════════════════════════╤═════════╗
║Task Name│ID│ Start Time │ End Time │Exit
Code║
╠═════════╪══╪════════════════════════════╪
════════════════════════════╪═════════╣
║task1 │1 │Fri May 05 18:12:05 EDT 2017│Fri May 05 18:12:05 EDT 2017│0
║

15

╚═════════╧══╧════════════════════════════╧
════════════════════════════╧═════════╝

Once you have the ID, you can issue the command to cleanup the execution artifacts (the completed
pod), as the following example shows:

dataflow:>task execution cleanup --id 1
Request to clean up resources for task execution 1 has been submitted

Database Credentials for Tasks

By default Spring Cloud Data Flow passes database credentials as properties to the pod at task
launch time. If using the exec or shell entry point styles the DB credentials will be viewable if the
user does a kubectl describe on the task’s pod. To configure Spring Cloud Data Flow to use
Kubernetes Secrets: Set spring.cloud.dataflow.task.use.kubernetes.secrets.for.db.credentials
property to true. If using the yaml files provided by Spring Cloud Data Flow update the
`src/kubernetes/server/server-deployment.yaml to add the following environment variable:

- name: SPRING_CLOUD_DATAFLOW_TASK_USE_KUBERNETES_SECRETS_FOR_DB_CREDENTIALS
 value: 'true'

If upgrading from a previous version of SCDF be sure to verify that spring.datasource.username and
spring.datasource.password environment variables are present in the secretKeyRefs in the server-
config.yaml. If not, add it as shown in the example below:

...
 task:
 platform:
 kubernetes:
 accounts:
 default:
 secretKeyRefs:
 - envVarName: "spring.datasource.password"
 secretName: mariadb
 dataKey: mariadb-root-password
 - envVarName: "spring.datasource.username"
 secretName: mariadb
 dataKey: mariadb-root-username
...

Also verify that the associated secret(dataKey) is also available in secrets. SCDF provides an
example of this for MariaDB here: src/kubernetes/mariadb/mariadb-svc.yaml.

NOTE
Passing of DB credentials via properties by default is to preserve to backwards
compatibility. This will be feature will be removed in future release.

16

Scheduling
This section covers customization of how scheduled tasks are configured. Scheduling of tasks is
enabled by default in the Spring Cloud Data Flow Kubernetes Server. Properties are used to
influence settings for scheduled tasks and can be configured on a global or per-schedule basis.

NOTE
Unless noted, properties set on a per-schedule basis always take precedence over
properties set as the server configuration. This arrangement allows for the ability to
override global server level properties for a specific schedule.

See KubernetesSchedulerProperties for more on the supported options.

Entry Point Style

An Entry Point Style affects how application properties are passed to the task container to be
deployed. Currently, three styles are supported:

• exec: (default) Passes all application properties as command line arguments.

• shell: Passes all application properties as environment variables.

• boot: Creates an environment variable called SPRING_APPLICATION_JSON that contains a JSON
representation of all application properties.

You can configure the entry point style as follows:

deployer.kubernetes.entryPointStyle=<Entry Point Style>

Replace <Entry Point Style> with your desired Entry Point Style.

You can also configure the Entry Point Style at the server level in the container env section of a
deployment YAML, as the following example shows:

env:
- name: SPRING_CLOUD_SCHEDULER_KUBERNETES_ENTRY_POINT_STYLE
 value: entryPointStyle

Replace entryPointStyle with the desired Entry Point Style.

You should choose an Entry Point Style of either exec or shell, to correspond to how the ENTRYPOINT
syntax is defined in the container’s Dockerfile. For more information and uses cases on exec vs
shell, see the ENTRYPOINT section of the Docker documentation.

Using the boot Entry Point Style corresponds to using the exec style ENTRYPOINT. Command line
arguments from the deployment request are passed to the container, with the addition of
application properties mapped into the SPRING_APPLICATION_JSON environment variable rather than
command line arguments.

17

https://github.com/spring-cloud/spring-cloud-scheduler-kubernetes/blob/master/src/main/java/org/springframework/cloud/scheduler/spi/kubernetes/KubernetesSchedulerProperties.java
https://docs.docker.com/engine/reference/builder/#entrypoint

Environment Variables

To influence the environment settings for a given application, you can take advantage of the
spring.cloud.deployer.kubernetes.environmentVariables property. For example, a common
requirement in production settings is to influence the JVM memory arguments. You can achieve
this by using the JAVA_TOOL_OPTIONS environment variable, as the following example shows:

deployer.kubernetes.environmentVariables=JAVA_TOOL_OPTIONS=-Xmx1024m

NOTE

When deploying stream applications or launching task applications where some of
the properties may contain sensitive information, use the shell or boot as the
entryPointStyle. This is because the exec (default) converts all properties to
command line arguments and thus may not be secure in some environments.

Additionally you can configure environment variables at the server level in the container env
section of a deployment YAML, as the following example shows:

NOTE

When specifying environment variables in the server configuration and on a per-
schedule basis, environment variables will be merged. This allows for the ability to
set common environment variables in the server configuration and more specific at
the specific schedule level.

env:
- name: SPRING_CLOUD_SCHEDULER_KUBERNETES_ENVIRONMENT_VARIABLES
 value: myVar=myVal

Replace myVar=myVal with your desired environment variables.

Image Pull Policy

An image pull policy defines when a Docker image should be pulled to the local registry. Currently,
three policies are supported:

• IfNotPresent: (default) Do not pull an image if it already exists.

• Always: Always pull the image regardless of whether it already exists.

• Never: Never pull an image. Use only an image that already exists.

The following example shows how you can individually configure containers:

deployer.kubernetes.imagePullPolicy=Always

Replace Always with your desired image pull policy.

You can configure an image pull policy at the server level in the container env section of a
deployment YAML, as the following example shows:

18

env:
- name: SPRING_CLOUD_SCHEDULER_KUBERNETES_IMAGE_PULL_POLICY
 value: Always

Replace Always with your desired image pull policy.

Private Docker Registry

Docker images that are private and require authentication can be pulled by configuring a Secret.
First, you must create a Secret in the cluster. Follow the Pull an Image from a Private Registry guide
to create the Secret.

Once you have created the secret, use the imagePullSecret property to set the secret to use, as the
following example shows:

deployer.kubernetes.imagePullSecret=mysecret

Replace mysecret with the name of the secret you created earlier.

You can also configure the image pull secret at the server level in the container env section of a
deployment YAML, as the following example shows:

env:
- name: SPRING_CLOUD_SCHEDULER_KUBERNETES_IMAGE_PULL_SECRET
 value: mysecret

Replace mysecret with the name of the secret you created earlier.

Namespace

By default the namespace used for scheduled tasks is default. This value can be set at the server
level configuration in the container env section of a deployment YAML, as the following example
shows:

env:
- name: SPRING_CLOUD_SCHEDULER_KUBERNETES_NAMESPACE
 value: mynamespace

Service Account

You can configure a custom service account for scheduled tasks through properties. An existing
service account can be used or a new one created. One way to create a service account is by using
kubectl, as the following example shows:

$ kubectl create serviceaccount myserviceaccountname

19

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

serviceaccount "myserviceaccountname" created

Then you can configure the service account to use on a per-schedule basis as follows:

deployer.kubernetes.taskServiceAccountName=myserviceaccountname

Replace myserviceaccountname with your service account name.

You can also configure the service account name at the server level in the container env section of a
deployment YAML, as the following example shows:

env:
- name: SPRING_CLOUD_SCHEDULER_KUBERNETES_TASK_SERVICE_ACCOUNT_NAME
 value: myserviceaccountname

Replace myserviceaccountname with the service account name to be applied to all deployments.

For more information on scheduling tasks see [spring-cloud-dataflow-schedule-launch-tasks].

Debug Support
Debugging the Spring Cloud Data Flow Kubernetes Server and included components (such as the
Spring Cloud Kubernetes Deployer) is supported through the Java Debug Wire Protocol (JDWP). This
section outlines an approach to manually enable debugging and another approach that uses
configuration files provided with Spring Cloud Data Flow Server Kubernetes to “patch” a running
deployment.

NOTE
JDWP itself does not use any authentication. This section assumes debugging is
being done on a local development environment (such as Minikube), so guidance on
securing the debug port is not provided.

Enabling Debugging Manually

To manually enable JDWP, first edit src/kubernetes/server/server-deployment.yaml and add an
additional containerPort entry under spec.template.spec.containers.ports with a value of 5005.
Additionally, add the JAVA_TOOL_OPTIONS environment variable under
spec.template.spec.containers.env as the following example shows:

spec:
 ...
 template:
 ...
 spec:
 containers:
 - name: scdf-server
 ...

20

https://github.com/spring-cloud/spring-cloud-deployer-kubernetes
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/jdwp-spec.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html#tooloptions

 ports:
 ...
 - containerPort: 5005
 env:
 - name: JAVA_TOOL_OPTIONS
 value: '-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=5005'

NOTE

The preceding example uses port 5005, but it can be any number that does not
conflict with another port. The chosen port number must also be the same for the
added containerPort value and the address parameter of the JAVA_TOOL_OPTIONS
-agentlib flag, as shown in the preceding example.

You can now start the Spring Cloud Data Flow Kubernetes Server. Once the server is up, you can
verify the configuration changes on the scdf-server deployment, as the following example (with
output) shows:

kubectl describe deployment/scdf-server
...
...
Pod Template:
 ...
 Containers:
 scdf-server:
 ...
 Ports: 80/TCP, 5005/TCP
 ...
 Environment:
 JAVA_TOOL_OPTIONS:
-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=5005
 ...

With the server started and JDWP enabled, you need to configure access to the port. In this
example, we use the port-forward subcommand of kubectl. The following example (with output)
shows how to expose a local port to your debug target by using port-forward:

$ kubectl get pod -l app=scdf-server
NAME READY STATUS RESTARTS AGE
scdf-server-5b7cfd86f7-d8mj4 1/1 Running 0 10m
$ kubectl port-forward scdf-server-5b7cfd86f7-d8mj4 5005:5005
Forwarding from 127.0.0.1:5005 -> 5005
Forwarding from [::1]:5005 -> 5005

You can now attach a debugger by pointing it to 127.0.0.1 as the host and 5005 as the port. The port-
forward subcommand runs until stopped (by pressing CTRL+c, for example).

You can remove debugging support by reverting the changes to src/kubernetes/server/server-
deployment.yaml. The reverted changes are picked up on the next deployment of the Spring Cloud

21

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

Data Flow Kubernetes Server. Manually adding debug support to the configuration is useful when
debugging should be enabled by default each time the server is deployed.

Enabling Debugging with Patching

Rather than manually changing the server-deployment.yaml, Kubernetes objects can be “patched” in
place. For convenience, patch files that provide the same configuration as the manual approach are
included. To enable debugging by patching, use the following command:

kubectl patch deployment scdf-server -p "$(cat src/kubernetes/server/server-
deployment-debug.yaml)"

Running the preceding command automatically adds the containerPort attribute and the
JAVA_TOOL_OPTIONS environment variable. The following example (with output) shows how toverify
changes to the scdf-server deployment:

$ kubectl describe deployment/scdf-server
...
...
Pod Template:
 ...
 Containers:
 scdf-server:
 ...
 Ports: 5005/TCP, 80/TCP
 ...
 Environment:
 JAVA_TOOL_OPTIONS:
-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=5005
 ...

To enable access to the debug port, rather than using the port-forward subcommand of kubectl, you
can patch the scdf-server Kubernetes service object. You must first ensure that the scdf-server
Kubernetes service object has the proper configuration. The following example (with output) shows
how to do so:

kubectl describe service/scdf-server
Port: <unset> 80/TCP
TargetPort: 80/TCP
NodePort: <unset> 30784/TCP

If the output contains <unset>, you must patch the service to add a name for this port. The following
example shows how to do so:

$ kubectl patch service scdf-server -p "$(cat src/kubernetes/server/server-svc.yaml)"

22

NOTE
A port name should only be missing if the target cluster had been created prior to
debug functionality being added. Since multiple ports are being added to the scdf-
server Kubernetes Service Object, each needs to have its own name.

Now you can add the debug port, as the following example shows:

kubectl patch service scdf-server -p "$(cat src/kubernetes/server/server-svc-
debug.yaml)"

The following example (with output) shows how to verify the mapping:

$ kubectl describe service scdf-server
Name: scdf-server
...
...
Port: scdf-server-jdwp 5005/TCP
TargetPort: 5005/TCP
NodePort: scdf-server-jdwp 31339/TCP
...
...
Port: scdf-server 80/TCP
TargetPort: 80/TCP
NodePort: scdf-server 30883/TCP
...
...

The output shows that container port 5005 has been mapped to the NodePort of 31339. The
following example (with output) shows how to get the IP address of the Minikube node:

$ minikube ip
192.168.99.100

With this information, you can create a debug connection by using a host of 192.168.99.100 and a
port of 31339.

The following example shows how to disable JDWP:

$ kubectl rollout undo deployment/scdf-server
$ kubectl patch service scdf-server --type json -p='[{"op": "remove", "path":
"/spec/ports/0"}]'

The Kubernetes deployment object is rolled back to its state before being patched. The Kubernetes
service object is then patched with a remove operation to remove port 5005 from the containerPorts
list.

23

NOTE
kubectl rollout undo forces the pod to restart. Patching the Kubernetes Service
Object does not re-create the service, and the port mapping to the scdf-server
deployment remains the same.

See Rolling Back a Deployment for more information on deployment rollbacks, including managing
history and Updating API Objects in Place Using kubectl Patch.

[1] SSL is disabled in this example, adjust accordingly for your environment and requirements

24

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#rolling-back-a-deployment
https://kubernetes.io/docs/tasks/run-application/update-api-object-kubectl-patch/

	Untitled
	Configuration - Kubernetes
	Feature Toggles
	Deployer Properties
	Tasks
	General Configuration
	Database
	Monitoring and Management
	Scheduling
	Debug Support

