Add a constant to each double-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm.
var dapxsumkbn = require( '@stdlib/blas/ext/base/dapxsumkbn' );
Adds a constant to each double-precision floating-point strided array element and computes the sum using an improved Kahan–Babuška algorithm.
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var v = dapxsumkbn( 3, 5.0, x, 1 );
// returns 16.0
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float64Array
. - stride: index increment for
x
.
The N
and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to access every other element in x
,
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var v = dapxsumkbn( 4, 5.0, x, 2 );
// returns 25.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array/float64' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = dapxsumkbn( 4, 5.0, x1, 2 );
// returns 25.0
Adds a constant to each double-precision floating-point strided array element and computes the sum using an improved Kahan–Babuška algorithm and alternative indexing semantics.
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var v = dapxsumkbn.ndarray( 3, 5.0, x, 1, 0 );
// returns 16.0
The function has the following additional parameters:
- offset: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer
, the offset
parameter supports indexing semantics based on a starting index. For example, to access every other value in x
starting from the second value
var Float64Array = require( '@stdlib/array/float64' );
var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var v = dapxsumkbn.ndarray( 4, 5.0, x, 2, 1 );
// returns 25.0
- If
N <= 0
, both functions return0.0
.
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' ).factory;
var filledarrayBy = require( '@stdlib/array/filled-by' );
var dapxsumkbn = require( '@stdlib/blas/ext/base/dapxsumkbn' );
var x = filledarrayBy( 10, 'float64', discreteUniform( 0, 100 ) );
console.log( x );
var v = dapxsumkbn( x.length, 5.0, x, 1 );
console.log( v );
- Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." Zeitschrift Für Angewandte Mathematik Und Mechanik 54 (1): 39–51. doi:10.1002/zamm.19740540106.
@stdlib/blas/ext/base/dapxsum
: adds a constant to each double-precision floating-point strided array element and computes the sum.@stdlib/blas/ext/base/dsumkbn
: calculate the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.@stdlib/blas/ext/base/gapxsumkbn
: adds a constant to each strided array element and computes the sum using an improved Kahan–Babuška algorithm.@stdlib/blas/ext/base/sapxsumkbn
: adds a constant to each single-precision floating-point strided array element and computes the sum using an improved Kahan–Babuška algorithm.