Compute the complete elliptic integral of the first kind.
The complete elliptic integral of the first kind is defined as
where the parameter m
is related to the modulus k
by m = k^2
.
var ellipk = require( '@stdlib/math/base/special/ellipk' );
Computes the complete elliptic integral of the first kind.
var v = ellipk( 0.5 );
// returns ~1.854
v = ellipk( -1.0 );
// returns ~1.311
v = ellipk( 2.0 );
// returns NaN
v = ellipk( Infinity );
// returns NaN
v = ellipk( -Infinity );
// returns NaN
v = ellipk( NaN );
// returns NaN
- This function is valid for
-∞ < m <= 1
.
var uniform = require( '@stdlib/random/array/uniform' );
var logEachMap = require( '@stdlib/console/log-each-map' );
var ellipk = require( '@stdlib/math/base/special/ellipk' );
var opts = {
'dtype': 'float64'
};
var m = uniform( 100, -1.0, 1.0, opts );
logEachMap( 'ellipk(%0.4f) = %0.4f', m, ellipk );
#include "stdlib/math/base/special/ellipk.h"
Computes the complete elliptic integral of the first kind.
double out = stdlib_base_ellipk( 0.5 );
// returns ~1.854
out = stdlib_base_ellipk( -1.0 );
// returns ~1.311
The function accepts the following arguments:
- x:
[in] double
input value.
double stdlib_base_ellipk( const double m );
#include "stdlib/math/base/special/ellipk.h"
#include <stdlib.h>
#include <stdio.h>
int main( void ) {
double m;
double v;
int i;
for ( i = 0; i < 100; i++ ) {
m = -1.0 + ( ( (double)rand() / (double)RAND_MAX ) * 2.0 );
v = stdlib_base_ellipk( m );
printf( "ellipk(%lf) = %lf\n", m, v );
}
}
- Fukushima, Toshio. 2009. "Fast computation of complete elliptic integrals and Jacobian elliptic functions." Celestial Mechanics and Dynamical Astronomy 105 (4): 305. doi:10.1007/s10569-009-9228-z.
- Fukushima, Toshio. 2015. "Precise and fast computation of complete elliptic integrals by piecewise minimax rational function approximation." Journal of Computational and Applied Mathematics 282 (July): 71–76. doi:10.1016/j.cam.2014.12.038.
@stdlib/math/base/special/ellipe
: compute the complete elliptic integral of the second kind.@stdlib/math/base/special/ellipj
: compute the Jacobi elliptic functions sn, cn, and dn.