Skip to content

Files

Latest commit

9f85b5d · Apr 25, 2025

History

History

dmeanpn

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Apr 11, 2025
Apr 11, 2025
Apr 11, 2025
Apr 11, 2025
Apr 11, 2025
Apr 11, 2025
Apr 25, 2025
Apr 11, 2025
Jun 17, 2020
Dec 21, 2024
Apr 11, 2025
Aug 12, 2021

dmeanpn

Calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.

The arithmetic mean is defined as

μ = 1 n i = 0 n 1 x i

Usage

var dmeanpn = require( '@stdlib/stats/base/dmeanpn' );

dmeanpn( N, x, strideX )

Computes the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );

var v = dmeanpn( x.length, x, 1 );
// returns ~0.3333

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float64Array.
  • strideX: stride length for x.

The N and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the arithmetic mean of every other element in x,

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );

var v = dmeanpn( 4, x, 2 );
// returns 1.25

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array/float64' );

var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var v = dmeanpn( 4, x1, 2 );
// returns 1.25

dmeanpn.ndarray( N, x, strideX, offsetX )

Computes the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm and alternative indexing semantics.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );

var v = dmeanpn.ndarray( x.length, x, 1, 0 );
// returns ~0.33333

The function has the following additional parameters:

  • offsetX: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the arithmetic mean for every other element in x starting from the second element

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );

var v = dmeanpn.ndarray( 4, x, 2, 1 );
// returns 1.25

Notes

  • If N <= 0, both functions return NaN.

Examples

var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var dmeanpn = require( '@stdlib/stats/base/dmeanpn' );

var x;
var i;

x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
    x[ i ] = round( (randu()*100.0) - 50.0 );
}
console.log( x );

var v = dmeanpn( x.length, x, 1 );
console.log( v );

C APIs

Usage

#include "stdlib/stats/base/dmeanpn.h"

stdlib_strided_dmeanpn( N, *X, strideX )

Computes the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.

const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };

double v = stdlib_strided_dmeanpn( 4, x, 2 );
// returns 4.0

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT stride length for X.
double stdlib_strided_dmeanpn( const CBLAS_INT N, const double *X, const CBLAS_INT strideX );

stdlib_strided_dmeanpn_ndarray( N, *X, strideX, offsetX )

Computes the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm and alternative indexing semantics.

const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };

double v = stdlib_strided_dmeanpn_ndarray( 4, x, 2, 0 );
// returns 4.0

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT stride length for X.
  • offsetX: [in] CBLAS_INT starting index for X.
double stdlib_strided_dmeanpn_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );

Examples

#include "stdlib/stats/base/dmeanpn.h"
#include <stdio.h>

int main( void ) {
    // Create a strided array:
    const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };

    // Specify the number of elements:
    const int N = 4;

    // Specify the stride length:
    const int strideX = 2;

    // Compute the arithmetic mean:
    double v = stdlib_strided_dmeanpn( N, x, strideX );

    // Print the result:
    printf( "mean: %lf\n", v );
}

References

  • Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." Communications of the ACM 9 (7). Association for Computing Machinery: 496–99. doi:10.1145/365719.365958.
  • Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In Proceedings of the 30th International Conference on Scientific and Statistical Database Management. New York, NY, USA: Association for Computing Machinery. doi:10.1145/3221269.3223036.

See Also

  • @stdlib/stats/base/dmean: calculate the arithmetic mean of a double-precision floating-point strided array.
  • @stdlib/stats/strided/dnanmeanpn: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring NaN values and using a two-pass error correction algorithm.
  • @stdlib/stats/base/meanpn: calculate the arithmetic mean of a strided array using a two-pass error correction algorithm.
  • @stdlib/stats/base/smeanpn: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.