Skip to content

Files

Latest commit

9f85b5d · Apr 25, 2025

History

History

sdsnanmeanors

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Dec 23, 2024
Jan 7, 2024
Apr 18, 2023
Jul 28, 2024
Aug 29, 2022
Jan 2, 2025
Apr 25, 2025
Mar 29, 2025
Jun 20, 2020
Jan 2, 2025
Jan 2, 2025
Aug 12, 2021

sdsnanmeanors

Calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values and using ordinary recursive summation with extended accumulation.

The arithmetic mean is defined as

μ = 1 n i = 0 n 1 x i

Usage

var sdsnanmeanors = require( '@stdlib/stats/base/sdsnanmeanors' );

sdsnanmeanors( N, x, stride )

Computes the arithmetic mean of a single-precision floating-point strided array x, ignoring NaN values and using ordinary recursive summation with extended accumulation.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = sdsnanmeanors( N, x, 1 );
// returns ~0.3333

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float32Array.
  • stride: index increment for x.

The N and stride parameters determine which elements in x are accessed at runtime. For example, to compute the arithmetic mean of every other element in x,

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
var N = floor( x.length / 2 );

var v = sdsnanmeanors( N, x, 2 );
// returns 1.25

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = sdsnanmeanors( N, x1, 2 );
// returns 1.25

sdsnanmeanors.ndarray( N, x, stride, offset )

Computes the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values and using ordinary recursive summation with extended accumulation and alternative indexing semantics.

var Float32Array = require( '@stdlib/array/float32' );

var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = sdsnanmeanors.ndarray( N, x, 1, 0 );
// returns ~0.33333

The function has the following additional parameters:

  • offset: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the arithmetic mean for every other value in x starting from the second value

var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var N = floor( x.length / 2 );

var v = sdsnanmeanors.ndarray( N, x, 2, 1 );
// returns 1.25

Notes

  • If N <= 0, both functions return NaN.
  • If every indexed element is NaN, both functions return NaN.
  • Accumulated intermediate values are stored as double-precision floating-point numbers.

Examples

var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float32Array = require( '@stdlib/array/float32' );
var sdsnanmeanors = require( '@stdlib/stats/base/sdsnanmeanors' );

var x;
var i;

x = new Float32Array( 10 );
for ( i = 0; i < x.length; i++ ) {
    if ( randu() < 0.2 ) {
        x[ i ] = NaN;
    } else {
        x[ i ] = round( (randu()*100.0) - 50.0 );
    }
}
console.log( x );

var v = sdsnanmeanors( x.length, x, 1 );
console.log( v );

See Also

  • @stdlib/stats/strided/sdsmeanors: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation.
  • @stdlib/stats/base/sdsnanmean: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values and using extended accumulation.