|
| 1 | +from typing import List, Optional, Tuple, Type, overload |
| 2 | + |
| 3 | +import pytest |
| 4 | +from transformers import (AutoConfig, AutoModelForVision2Seq, AutoTokenizer, |
| 5 | + BatchEncoding) |
| 6 | + |
| 7 | +from vllm.multimodal.utils import rescale_image_size |
| 8 | +from vllm.sequence import SampleLogprobs |
| 9 | + |
| 10 | +from ....conftest import (IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner, |
| 11 | + _ImageAssets) |
| 12 | +from ....utils import multi_gpu_test |
| 13 | +from ...utils import check_logprobs_close |
| 14 | + |
| 15 | +_LIMIT_IMAGE_PER_PROMPT = 1 |
| 16 | + |
| 17 | +HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({ |
| 18 | + "stop_sign": |
| 19 | + "<|image|><|begin_of_text|>The meaning of the image is", |
| 20 | + "cherry_blossom": |
| 21 | + "<|image|><|begin_of_text|>The city is", |
| 22 | +}) |
| 23 | + |
| 24 | +text_only_prompts = [ |
| 25 | + "The color of the sky is blue but sometimes it can also be", |
| 26 | +] |
| 27 | + |
| 28 | +models = [ |
| 29 | + "meta-llama/Llama-3.2-11B-Vision-Instruct", |
| 30 | +] |
| 31 | + |
| 32 | + |
| 33 | +def vllm_to_hf_output(vllm_output: Tuple[List[int], str, |
| 34 | + Optional[SampleLogprobs]], |
| 35 | + model: str): |
| 36 | + """Sanitize vllm output to be comparable with hf output.""" |
| 37 | + output_ids, output_str, out_logprobs = vllm_output |
| 38 | + |
| 39 | + config = AutoConfig.from_pretrained(model) |
| 40 | + image_token_id = config.image_token_index |
| 41 | + |
| 42 | + tokenizer = AutoTokenizer.from_pretrained(model) |
| 43 | + eos_token_id = tokenizer.eos_token_id |
| 44 | + |
| 45 | + hf_output_ids = [ |
| 46 | + token_id for idx, token_id in enumerate(output_ids) |
| 47 | + if token_id != image_token_id or output_ids[idx - 1] != image_token_id |
| 48 | + ] |
| 49 | + |
| 50 | + assert output_str[0] == " " |
| 51 | + hf_output_str = output_str[1:] |
| 52 | + if hf_output_ids[-1] == eos_token_id: |
| 53 | + hf_output_str = hf_output_str + tokenizer.decode(eos_token_id) |
| 54 | + |
| 55 | + return hf_output_ids, hf_output_str, out_logprobs |
| 56 | + |
| 57 | + |
| 58 | +@overload |
| 59 | +def run_test( |
| 60 | + hf_runner: Type[HfRunner], |
| 61 | + vllm_runner: Type[VllmRunner], |
| 62 | + image_assets: _ImageAssets, |
| 63 | + model: str, |
| 64 | + *, |
| 65 | + size_factors: List[float], |
| 66 | + dtype: str, |
| 67 | + max_tokens: int, |
| 68 | + num_logprobs: int, |
| 69 | + tensor_parallel_size: int, |
| 70 | + distributed_executor_backend: Optional[str] = None, |
| 71 | +): |
| 72 | + ... |
| 73 | + |
| 74 | + |
| 75 | +@overload |
| 76 | +def run_test( |
| 77 | + hf_runner: Type[HfRunner], |
| 78 | + vllm_runner: Type[VllmRunner], |
| 79 | + image_assets: _ImageAssets, |
| 80 | + model: str, |
| 81 | + *, |
| 82 | + sizes: List[Tuple[int, int]], |
| 83 | + dtype: str, |
| 84 | + max_tokens: int, |
| 85 | + num_logprobs: int, |
| 86 | + tensor_parallel_size: int, |
| 87 | + distributed_executor_backend: Optional[str] = None, |
| 88 | +): |
| 89 | + ... |
| 90 | + |
| 91 | + |
| 92 | +def run_test( |
| 93 | + hf_runner: Type[HfRunner], |
| 94 | + vllm_runner: Type[VllmRunner], |
| 95 | + image_assets: _ImageAssets, |
| 96 | + model: str, |
| 97 | + *, |
| 98 | + size_factors: Optional[List[float]] = None, |
| 99 | + sizes: Optional[List[Tuple[int, int]]] = None, |
| 100 | + dtype: str, |
| 101 | + max_tokens: int, |
| 102 | + num_logprobs: int, |
| 103 | + tensor_parallel_size: int, |
| 104 | + distributed_executor_backend: Optional[str] = None, |
| 105 | +): |
| 106 | + images = [asset.pil_image for asset in image_assets] |
| 107 | + |
| 108 | + if size_factors is not None: |
| 109 | + inputs_per_image = [( |
| 110 | + [prompt for _ in size_factors], |
| 111 | + [rescale_image_size(image, factor) for factor in size_factors], |
| 112 | + ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)] |
| 113 | + elif sizes is not None: |
| 114 | + inputs_per_image = [( |
| 115 | + [ |
| 116 | + prompt if size is not None else text_only_prompts[0] |
| 117 | + for size in sizes |
| 118 | + ], |
| 119 | + [ |
| 120 | + image.resize(size) if size is not None else None |
| 121 | + for size in sizes |
| 122 | + ], |
| 123 | + ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)] |
| 124 | + if len(sizes) == 0: |
| 125 | + inputs_per_image.append( |
| 126 | + (text_only_prompts, [None] * len(text_only_prompts))) |
| 127 | + else: |
| 128 | + raise ValueError("You must provide either `size_factors` or `sizes`") |
| 129 | + |
| 130 | + _run_test(hf_runner, |
| 131 | + vllm_runner, |
| 132 | + inputs_per_image, |
| 133 | + model, |
| 134 | + dtype=dtype, |
| 135 | + max_tokens=max_tokens, |
| 136 | + num_logprobs=num_logprobs, |
| 137 | + tensor_parallel_size=tensor_parallel_size, |
| 138 | + distributed_executor_backend=distributed_executor_backend) |
| 139 | + |
| 140 | + |
| 141 | +def _run_test( |
| 142 | + hf_runner: Type[HfRunner], |
| 143 | + vllm_runner: Type[VllmRunner], |
| 144 | + inputs: List[Tuple[List[str], PromptImageInput]], |
| 145 | + model: str, |
| 146 | + *, |
| 147 | + dtype: str, |
| 148 | + max_tokens: int, |
| 149 | + num_logprobs: int, |
| 150 | + tensor_parallel_size: int, |
| 151 | + distributed_executor_backend: Optional[str] = None, |
| 152 | +): |
| 153 | + """Inference result should be the same between hf and vllm. |
| 154 | +
|
| 155 | + All the image fixtures for the test are from IMAGE_ASSETS. |
| 156 | + For huggingface runner, we provide the PIL images as input. |
| 157 | + For vllm runner, we provide MultiModalDataDict objects |
| 158 | + and corresponding MultiModalConfig as input. |
| 159 | + Note, the text input is also adjusted to abide by vllm contract. |
| 160 | + The text output is sanitized to be able to compare with hf. |
| 161 | + """ |
| 162 | + # NOTE: take care of the order. run vLLM first, and then run HF. |
| 163 | + # vLLM needs a fresh new process without cuda initialization. |
| 164 | + # if we run HF first, the cuda initialization will be done and it |
| 165 | + # will hurt multiprocessing backend with fork method (the default method). |
| 166 | + |
| 167 | + # max_model_len should be greater than image_feature_size |
| 168 | + with vllm_runner(model, |
| 169 | + dtype=dtype, |
| 170 | + max_num_seqs=16, |
| 171 | + max_model_len=4096, |
| 172 | + tensor_parallel_size=tensor_parallel_size, |
| 173 | + distributed_executor_backend=distributed_executor_backend, |
| 174 | + enforce_eager=True, |
| 175 | + limit_mm_per_prompt={"image": _LIMIT_IMAGE_PER_PROMPT |
| 176 | + }) as vllm_model: |
| 177 | + vllm_outputs_per_image = [ |
| 178 | + vllm_model.generate_greedy_logprobs(prompts, |
| 179 | + max_tokens, |
| 180 | + num_logprobs=num_logprobs, |
| 181 | + images=images) |
| 182 | + for prompts, images in inputs |
| 183 | + ] |
| 184 | + |
| 185 | + def process(hf_inputs: BatchEncoding): |
| 186 | + return hf_inputs |
| 187 | + |
| 188 | + from transformers import AutoConfig |
| 189 | + from transformers.models.mllama import MllamaConfig as MllamaConfigHf |
| 190 | + |
| 191 | + # use transformer's MllamaConfig for hf_runner |
| 192 | + # and vllm's MllamaConfig for vllm_runner |
| 193 | + AutoConfig.register("mllama", MllamaConfigHf, exist_ok=True) |
| 194 | + with hf_runner(model, |
| 195 | + dtype=dtype, |
| 196 | + postprocess_inputs=process, |
| 197 | + auto_cls=AutoModelForVision2Seq) as hf_model: |
| 198 | + hf_outputs_per_image = [ |
| 199 | + hf_model.generate_greedy_logprobs_limit(prompts, |
| 200 | + max_tokens, |
| 201 | + num_logprobs=num_logprobs, |
| 202 | + images=images) |
| 203 | + for prompts, images in inputs |
| 204 | + ] |
| 205 | + |
| 206 | + from vllm.transformers_utils.configs.mllama import MllamaConfig |
| 207 | + AutoConfig.register("mllama", MllamaConfig, exist_ok=True) |
| 208 | + for hf_outputs, vllm_outputs in zip(hf_outputs_per_image, |
| 209 | + vllm_outputs_per_image): |
| 210 | + check_logprobs_close( |
| 211 | + outputs_0_lst=hf_outputs, |
| 212 | + outputs_1_lst=[ |
| 213 | + vllm_to_hf_output(vllm_output, model) |
| 214 | + for vllm_output in vllm_outputs |
| 215 | + ], |
| 216 | + name_0="hf", |
| 217 | + name_1="vllm", |
| 218 | + ) |
| 219 | + |
| 220 | + |
| 221 | +@pytest.mark.parametrize("model", models) |
| 222 | +@pytest.mark.parametrize( |
| 223 | + "sizes", |
| 224 | + [ |
| 225 | + # Text only |
| 226 | + [], |
| 227 | + # Single-size |
| 228 | + [(512, 512)], |
| 229 | + # Single-size, batched |
| 230 | + [(512, 512), (512, 512), (512, 512)], |
| 231 | + # Multi-size, batched |
| 232 | + [(512, 512), (1024, 512), (1536, 512), (2048, 512), (512, 1024), |
| 233 | + (1024, 1024), (512, 1536), (512, 2028)], |
| 234 | + # Multi-size, batched, including text only |
| 235 | + [(512, 512), (1024, 512), (1536, 512), (2048, 512), (512, 1024), |
| 236 | + (1024, 1024), (512, 1536), (512, 2028), None], |
| 237 | + # mllama has 8 possible aspect ratios, carefully set the sizes |
| 238 | + # to cover all of them |
| 239 | + ], |
| 240 | +) |
| 241 | +@pytest.mark.parametrize("dtype", ["bfloat16"]) |
| 242 | +@pytest.mark.parametrize("max_tokens", [128]) |
| 243 | +@pytest.mark.parametrize("num_logprobs", [5]) |
| 244 | +def test_models(hf_runner, vllm_runner, image_assets, model, sizes, dtype, |
| 245 | + max_tokens, num_logprobs) -> None: |
| 246 | + run_test( |
| 247 | + hf_runner, |
| 248 | + vllm_runner, |
| 249 | + image_assets, |
| 250 | + model, |
| 251 | + sizes=sizes, |
| 252 | + dtype=dtype, |
| 253 | + max_tokens=max_tokens, |
| 254 | + num_logprobs=num_logprobs, |
| 255 | + tensor_parallel_size=1, |
| 256 | + ) |
| 257 | + |
| 258 | + |
| 259 | +@multi_gpu_test(num_gpus=2) |
| 260 | +@pytest.mark.parametrize("model", models) |
| 261 | +@pytest.mark.parametrize( |
| 262 | + "sizes", |
| 263 | + [ |
| 264 | + [(512, 512), (1024, 512), (1536, 512), (2048, 512), (512, 1024), |
| 265 | + (1024, 1024), (512, 1536), (512, 2028), None], |
| 266 | + ], |
| 267 | +) |
| 268 | +@pytest.mark.parametrize("dtype", ["bfloat16"]) |
| 269 | +@pytest.mark.parametrize("max_tokens", [128]) |
| 270 | +@pytest.mark.parametrize("num_logprobs", [5]) |
| 271 | +def test_models_distributed(hf_runner, vllm_runner, image_assets, model, sizes, |
| 272 | + dtype, max_tokens, num_logprobs) -> None: |
| 273 | + run_test( |
| 274 | + hf_runner, |
| 275 | + vllm_runner, |
| 276 | + image_assets, |
| 277 | + model, |
| 278 | + sizes=sizes, |
| 279 | + dtype=dtype, |
| 280 | + max_tokens=max_tokens, |
| 281 | + num_logprobs=num_logprobs, |
| 282 | + tensor_parallel_size=2, |
| 283 | + ) |
0 commit comments