Skip to content

Commit 08bee64

Browse files
authored
Bump to 1.1.3 (#529)
* Set Twine version to fix pypi uploads on build * Revert changes from merge into main * Bump version to 1.1.3 * Update docs
1 parent 25e8ab3 commit 08bee64

24 files changed

+1367
-1435
lines changed

README.rst

Lines changed: 22 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -32,31 +32,41 @@
3232
.. start-inclusion-marker-do-not-remove
3333
3434
35-
**SLEAP** - Social LEAP Estimates Animal Pose
36-
---------------------------------------------
35+
**SLEAP** - Social LEAP Estimates Animal Poses
36+
==============================================
3737

3838
.. image:: https://sleap.ai/docs/_static/sleap_movie.gif
3939
:width: 600px
4040

4141
**SLEAP** is an open source deep-learning based framework for estimating positions of animal body parts. It supports *multi-animal pose estimation* and *tracking*, and includes an advanced labeling/training GUI for active learning and proofreading.
4242

43-
SLEAP is developed in the `Princeton Neuroscience Institute <pni.princeton.edu>`_. It is written in Python and uses TensorFlow 2 for machine learning and Qt/PySide2 for graphical user interface.
43+
SLEAP is written in Python and uses TensorFlow 2 for machine learning and Qt/PySide2 for graphical user interface. SLEAP is the successor to `LEAP <https://github.com/talmo/leap>`_ (`Pereira et al., Nature Methods, 2019 <https://www.nature.com/articles/s41592-018-0234-5>`_).
4444

4545

4646
Features
4747
------------
4848

4949
* Purpose-built GUI and human-in-the-loop workflow for rapidly labeling large datasets
5050
* Multi-animal pose estimation with *top-down* and *bottom-up* training strategies
51-
* State-of-the-art pretrained and customizable Neural Network architectures that deliver *accurate predictions* with *very few* labels
51+
* State-of-the-art pretrained and customizable neural network architectures that deliver *accurate predictions* with *very few* labels
5252
* Fast training: 15 to 60 mins on a single GPU for a typical dataset
5353
* Fast inference: 400+ FPS for batch, 10ms latency for realtime
54-
* Support for remote training/inference workflow (for using without GPUs)
54+
* Support for remote training/inference workflow (for using SLEAP without GPUs)
5555
* Flexible developer API for building integrated apps and customization
5656

5757

58+
Getting started
59+
----------------
60+
61+
To get started with SLEAP, head over to the `Documentation <https://sleap.ai>`_ where you'll find tutorials, guides and example notebooks.
62+
63+
To learn more about the technical side of SLEAP and multi-animal pose tracking, check out our `preprint on bioRxiv <https://doi.org/10.1101/2020.08.31.276246>`_ or watch the `tutorial on SLEAP <https://cbmm.mit.edu/video/decoding-animal-behavior-through-pose-tracking>`_. For a more general introduction to the field of quantitative animal behavior, check out our `review in Nature Neuroscience <https://rdcu.be/caH3H>`_.
64+
65+
You can find the latest version of SLEAP in the `Releases <https://github.com/murthylab/sleap/releases>`_ page.
66+
67+
5868
References
59-
----------
69+
-----------
6070
If you use **SLEAP** in your research, please cite:
6171

6272
Talmo D. Pereira, Nathaniel Tabris, Junyu Li, Shruthi Ravindranath, Eleni S. Papadoyannis, Z. Yan Wang, David M. Turner, et al. 2020. "SLEAP: Multi-Animal Pose Tracking." *bioRxiv*. https://doi.org/10.1101/2020.08.31.276246.
@@ -89,19 +99,17 @@ Contributors
8999
* **Joshua Shaevitz**, Physics and Lewis-Sigler Institute, Princeton University
90100
* **Mala Murthy**, Princeton Neuroscience Institute, Princeton University
91101

92-
SLEAP is developed in the Murthy and Shaevitz labs at Princeton University. Funding: NIH BRAIN Initative R01 NS104899 and Princeton Innovation Accelerator Fund.
93-
SLEAP is the successor to `LEAP <https://github.com/talmo/leap>`_ (`Pereira et al., 2019 <https://www.nature.com/articles/s41592-018-0234-5>`_).
94-
To learn more about SLEAP and multi-animal pose tracking download our `preprint on bioRxiv <https://doi.org/10.1101/2020.08.31.276246>`_ or watch the `tutorial on SLEAP <https://cbmm.mit.edu/video/decoding-animal-behavior-through-pose-tracking>`_.
102+
SLEAP is developed in the `Murthy <https://murthylab.princeton.edu>`_ and `Shaevitz <https://shaevitzlab.princeton.edu>`_ labs at the `Princeton Neuroscience Institute <https://pni.princeton.edu>`_ at Princeton University. This work was made possible through our funding sources, including: NIH BRAIN Initative R01 NS104899 and Princeton Innovation Accelerator Fund.
95103

96104
.. end-inclusion-marker-do-not-remove
97105
98-
Getting Started with SLEAP
99-
----------------------------
106+
Links
107+
------
100108
* `Documentation Homepage <https://sleap.ai>`_
101-
* `Workflow Overview <https://sleap.ai/overview.html>`_
109+
* `Overview <https://sleap.ai/overview.html>`_
102110
* `Installation <https://sleap.ai/installation.html>`_
103-
* `End-to-end Tutorial <https://sleap.ai/tutorials/tutorial.html>`_
104-
* `Detailed Guides <https://sleap.ai/guides/index.html>`_
111+
* `Tutorial <https://sleap.ai/tutorials/tutorial.html>`_
112+
* `Guides <https://sleap.ai/guides/index.html>`_
105113
* `Notebooks <https://sleap.ai/notebooks/index.html>`_
106114
* `Developer API <https://sleap.ai/api.html>`_
107115

dev_requirements.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ myst-nb
99
sphinx-autobuild
1010
black
1111
pre-commit
12-
twine
12+
twine==3.3.0
1313
PyGithub
1414
jupyterlab
1515
jedi==0.17.2

docs/_templates/api_head.rst

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,7 @@ Developer API
66

77
.. toctree::
88
:caption: API
9+
:maxdepth: 1
910

1011
.. autosummary::
1112
:toctree: api

docs/conf.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -27,15 +27,15 @@
2727
copyright = "2019–2021, Murthy Lab @ Princeton University"
2828

2929
# The short X.Y version
30-
version = "1.1.2"
30+
version = "1.1.3"
3131

3232
# Get the sleap version
3333
# with open("../sleap/version.py") as f:
3434
# version_file = f.read()
3535
# version = re.search("\d.+(?=['\"])", version_file).group(0)
3636

3737
# Release should be the full branch name
38-
release = "v1.1.2"
38+
release = "v1.1.3"
3939

4040
html_title = f"SLEAP ({release})"
4141
html_short_title = "SLEAP"

docs/guides/choosing-models.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
.. _choosing_models:
22

33
Choosing a set of models
4-
~~~~~~~~~~~~~~~~~~~~~~~~~
4+
========================
55

66
Inference will run in different modes depending on the output types of the models you supply. SLEAP currently support two distinct modes for multi-animal inference.
77

0 commit comments

Comments
 (0)