Skip to content

Commit f6211b0

Browse files
jburnimtensorflower-gardener
authored andcommitted
Update tf.optimizers -> tf_keras.optimizers in STS example notebook.
PiperOrigin-RevId: 606694059
1 parent be4732f commit f6211b0

File tree

1 file changed

+5
-8
lines changed

1 file changed

+5
-8
lines changed

tensorflow_probability/examples/jupyter_notebooks/Structural_Time_Series_Modeling_Case_Studies_Atmospheric_CO2_and_Electricity_Demand.ipynb

+5-8
Original file line numberDiff line numberDiff line change
@@ -85,7 +85,6 @@
8585
"#@title Import and set ups{ display-mode: \"form\" }\n",
8686
"\n",
8787
"%matplotlib inline\n",
88-
"import matplotlib as mpl\n",
8988
"from matplotlib import pylab as plt\n",
9089
"import matplotlib.dates as mdates\n",
9190
"import seaborn as sns\n",
@@ -94,12 +93,10 @@
9493
"\n",
9594
"import numpy as np\n",
9695
"import tensorflow.compat.v2 as tf\n",
96+
"import tf_keras\n",
9797
"import tensorflow_probability as tfp\n",
9898
"\n",
99-
"from tensorflow_probability import distributions as tfd\n",
100-
"from tensorflow_probability import sts\n",
101-
"\n",
102-
"tf.enable_v2_behavior()"
99+
"from tensorflow_probability import sts"
103100
]
104101
},
105102
{
@@ -296,7 +293,6 @@
296293
"\n",
297294
" fig=plt.figure(figsize=(12, 6))\n",
298295
" ax = fig.add_subplot(1,1,1)\n",
299-
" num_timesteps = one_step_mean.shape[-1]\n",
300296
" ax.plot(dates, observed_time_series, label=\"observed time series\", color=c1)\n",
301297
" ax.plot(dates, one_step_mean, label=\"one-step prediction\", color=c2)\n",
302298
" ax.fill_between(dates,\n",
@@ -504,7 +500,7 @@
504500
" target_log_prob_fn=co2_model.joint_distribution(\n",
505501
" observed_time_series=co2_by_month_training_data).log_prob,\n",
506502
" surrogate_posterior=variational_posteriors,\n",
507-
" optimizer=tf.optimizers.Adam(learning_rate=0.1),\n",
503+
" optimizer=tf_keras.optimizers.Adam(learning_rate=0.1),\n",
508504
" num_steps=num_variational_steps,\n",
509505
" jit_compile=True)\n",
510506
"\n",
@@ -918,7 +914,7 @@
918914
" target_log_prob_fn=demand_model.joint_distribution(\n",
919915
" observed_time_series=demand_training_data).log_prob,\n",
920916
" surrogate_posterior=variational_posteriors,\n",
921-
" optimizer=tf.optimizers.Adam(learning_rate=0.1),\n",
917+
" optimizer=tf_keras.optimizers.Adam(learning_rate=0.1),\n",
922918
" num_steps=num_variational_steps,\n",
923919
" jit_compile=True)\n",
924920
"plt.plot(elbo_loss_curve)\n",
@@ -1245,6 +1241,7 @@
12451241
"metadata": {
12461242
"colab": {
12471243
"collapsed_sections": [
1244+
"uiR4-VOt9NFX",
12481245
"5BVYddeJg-An"
12491246
],
12501247
"name": "Structural Time Series Modeling Case Studies Atmospheric CO2 and Electricity Demand",

0 commit comments

Comments
 (0)