@@ -54,11 +54,31 @@ def vgg19_simple_api(net_in, end_with):
54
54
# with pixels values in the range of 0-255 and subtracts the mean image
55
55
# values (calculated over the entire ImageNet training set).
56
56
57
- # Rescale the input tensor with pixels values in the range of 0-255
58
- net_in .outputs = net_in .outputs * 255.0
59
-
60
- mean = tf .constant ([103.939 , 116.779 , 123.68 ], dtype = tf .float32 , shape = [1 , 1 , 1 , 3 ], name = 'img_mean' )
61
- net_in .outputs = net_in .outputs - mean
57
+ # # Rescale the input tensor with pixels values in the range of 0-255
58
+ # net_in.outputs = net_in.outputs * 255.0
59
+ # red, green, blue = tf.split(net_in.outputs, 3, 3)
60
+ VGG_MEAN = [103.939 , 116.779 , 123.68 ]
61
+ #
62
+ # bgr = tf.concat([
63
+ # blue - VGG_MEAN[0],
64
+ # green - VGG_MEAN[1],
65
+ # red - VGG_MEAN[2],
66
+ # ], axis=3)
67
+ # # mean = tf.constant([103.939, 116.779, 123.68], dtype=tf.float32, shape=[1, 1, 1, 3], name='img_mean')
68
+ # # net_in.outputs = net_in.outputs - mean
69
+ # net_in.outputs = bgr
70
+ rgb = net_in .outputs
71
+ rgb_scaled = rgb * 255.0
72
+ # Convert RGB to BGR
73
+ red , green , blue = tf .split (rgb_scaled , 3 , 3 )
74
+
75
+ bgr = tf .concat ([
76
+ blue - VGG_MEAN [0 ],
77
+ green - VGG_MEAN [1 ],
78
+ red - VGG_MEAN [2 ],
79
+ ], axis = 3 )
80
+
81
+ net_in .outputs = bgr
62
82
63
83
layers = [
64
84
# conv1
@@ -163,6 +183,8 @@ def restore_params(self, sess):
163
183
b = np .asarray (val [1 ][1 ])
164
184
print (" Loading %s: %s, %s" % (val [0 ], W .shape , b .shape ))
165
185
params .extend ([W , b ])
186
+ if len (self .all_params ) == len (params ):
187
+ break
166
188
167
189
print ("Restoring model from npz file" )
168
190
assign_params (sess , params , self .net )
0 commit comments