Skip to content

Commit d5fcbc0

Browse files
author
hanjr
committed
add README for app_tutorials
1 parent b8c80d9 commit d5fcbc0

7 files changed

+105
-0
lines changed

docs/images/3d_human_pose_result.jpg

46.8 KB
Loading

docs/images/human_pose_points.jpg

26.3 KB
Loading

docs/images/yolov4_image_result.png

1.79 MB
Loading

docs/images/yolov4_video_result.gif

6.91 MB
Loading

examples/app_tutorials/README.md

+105
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,105 @@
1+
# Quick Start
2+
TensorLayer Implementation of [YOLOv4: Optimal Speed and Accuracy of Object Detection][1]
3+
TensorLayer Implementation of [Optimizing Network Structure for 3D Human Pose Estimation][2](ICCV2019)
4+
5+
## YOLOv4
6+
7+
Yolov4 was trained on COCO 2017 Dataset in this demo.
8+
9+
### Data
10+
11+
Download yolov4.weights file [yolov4_model.npz][3], Password: `idsz`, and put yolov4.weights under the folder `./examples/app_tutorials/model/`. Your directory structure should look like this:
12+
13+
```
14+
${root}/examples
15+
└── app_tutorials
16+
└── model
17+
├── yolov4_model.npz
18+
├── coco.names
19+
└── yolov4_weights_congfig.txt
20+
21+
```
22+
23+
24+
You can put an image or a video under the folder `./examples/app_tutorials/data/`,like:
25+
```
26+
${root}/examples
27+
└──app_tutorials
28+
└──data
29+
└── *.jpg/*.png/*.mp4/..
30+
```
31+
### demo
32+
33+
1. Image
34+
Modify `image_path` in `./examples/app_tutorials/tutorial_object_detection_yolov4_image.py` according to your demand, then
35+
```bash
36+
python tutorial_object_detection_yolov4_image.py
37+
```
38+
2. Video
39+
Modify `video_path` in `./examples/app_tutorials/tutorial_object_detection_yolov4_video.py` according to your demand, then
40+
41+
```bash
42+
python tutorial_object_detection_yolov4_video.py
43+
```
44+
3. Output
45+
-Image
46+
47+
<p align="center"><img src="../../docs/images/yolov4_image_result.png" width="640"\></p>
48+
-Video
49+
50+
<p align="center"><img src="../../docs/images/yolov4_video_result.gif" width="640"\></p>
51+
52+
53+
54+
## 3D Human Pose Estimation
55+
56+
### Data
57+
58+
Download 3D Human Pose Estimation model weights [lcn_model.npz][4], Password:`ec07`,and put it under the folder `./examples/app_tutorials/model/`, Your directory structure should look like this:
59+
60+
```
61+
${root}/examples
62+
└── app_tutorials
63+
└── model
64+
├── lcn_model.npz
65+
└── pose_weights_config.txt
66+
```
67+
Download finetuned Stacked Hourglass detections and preprocessed H3.6M data([H36M.rar][5],Password:`kw9i`), then uncompress and put them under the folder `./examples/app_tutorials/data/`, like:
68+
```
69+
${root}/examples
70+
└──app_tutorials
71+
└──data
72+
├── h36m_sh_dt_ft.pkl
73+
├── h36m_test.pkl
74+
└── h36m_train.pkl
75+
```
76+
Each sample is a list with the length of 34 in three `.pkl` files. The list represents `[x,y]` of 17 human pose points:
77+
<p align="center"><img src="../../docs/images/human_pose_points.jpg" width="300"\></p>
78+
79+
If you would like to know how to prepare the H3.6M data, please have a look at the [pose_lcn][6].
80+
81+
### Demo
82+
83+
For a quick demo, simply run
84+
85+
```bash
86+
python tutorial_human_3dpose_estimation_LCN.py
87+
```
88+
This will produce a visualization similar to this:
89+
<p align="center"><img src="../../docs/images/3d_human_pose_result.jpg" width="1500"\></p>
90+
91+
This demo maps 2D poses to 3D space. Each 3D space result list represents `[x,y,z]` of 17 human pose points.
92+
93+
# Acknowledgement
94+
95+
Yolov4 is bulit on https://github.com/AlexeyAB/darknet and https://github.com/hunglc007/tensorflow-yolov4-tflite.
96+
3D Human Pose Estimation is bulit on https://github.com/rujiewu/pose_lcn and https://github.com/una-dinosauria/3d-pose-baseline.
97+
We would like to thank the authors for publishing their code.
98+
99+
100+
[1]:https://arxiv.org/abs/2004.10934
101+
[2]:https://openaccess.thecvf.com/content_ICCV_2019/papers/Ci_Optimizing_Network_Structure_for_3D_Human_Pose_Estimation_ICCV_2019_paper.pdf
102+
[3]:https://pan.baidu.com/s/1MC1dmEwpxsdgHO1MZ8fYRQ
103+
[4]:https://pan.baidu.com/s/1HBHWsAfyAlNaavw0iyUmUQ
104+
[5]:https://pan.baidu.com/s/1nA96AgMsvs1sFqkTs7Dfaw
105+
[6]:https://github.com/rujiewu/pose_lcn

0 commit comments

Comments
 (0)