|
| 1 | +# Quick Start |
| 2 | +TensorLayer Implementation of [YOLOv4: Optimal Speed and Accuracy of Object Detection][1] |
| 3 | +TensorLayer Implementation of [Optimizing Network Structure for 3D Human Pose Estimation][2](ICCV2019) |
| 4 | + |
| 5 | +## YOLOv4 |
| 6 | + |
| 7 | +Yolov4 was trained on COCO 2017 Dataset in this demo. |
| 8 | + |
| 9 | +### Data |
| 10 | + |
| 11 | +Download yolov4.weights file [yolov4_model.npz][3], Password: `idsz`, and put yolov4.weights under the folder `./examples/app_tutorials/model/`. Your directory structure should look like this: |
| 12 | + |
| 13 | +``` |
| 14 | +${root}/examples |
| 15 | + └── app_tutorials |
| 16 | + └── model |
| 17 | + ├── yolov4_model.npz |
| 18 | + ├── coco.names |
| 19 | + └── yolov4_weights_congfig.txt |
| 20 | +
|
| 21 | +``` |
| 22 | + |
| 23 | + |
| 24 | +You can put an image or a video under the folder `./examples/app_tutorials/data/`,like: |
| 25 | +``` |
| 26 | +${root}/examples |
| 27 | + └──app_tutorials |
| 28 | + └──data |
| 29 | + └── *.jpg/*.png/*.mp4/.. |
| 30 | +``` |
| 31 | +### demo |
| 32 | + |
| 33 | +1. Image |
| 34 | + Modify `image_path` in `./examples/app_tutorials/tutorial_object_detection_yolov4_image.py` according to your demand, then |
| 35 | + ```bash |
| 36 | +python tutorial_object_detection_yolov4_image.py |
| 37 | + ``` |
| 38 | +2. Video |
| 39 | + Modify `video_path` in `./examples/app_tutorials/tutorial_object_detection_yolov4_video.py` according to your demand, then |
| 40 | + |
| 41 | +```bash |
| 42 | + python tutorial_object_detection_yolov4_video.py |
| 43 | +``` |
| 44 | +3. Output |
| 45 | + -Image |
| 46 | + |
| 47 | + <p align="center"><img src="../../docs/images/yolov4_image_result.png" width="640"\></p> |
| 48 | + -Video |
| 49 | + |
| 50 | + <p align="center"><img src="../../docs/images/yolov4_video_result.gif" width="640"\></p> |
| 51 | + |
| 52 | + |
| 53 | + |
| 54 | +## 3D Human Pose Estimation |
| 55 | + |
| 56 | +### Data |
| 57 | + |
| 58 | +Download 3D Human Pose Estimation model weights [lcn_model.npz][4], Password:`ec07`,and put it under the folder `./examples/app_tutorials/model/`, Your directory structure should look like this: |
| 59 | + |
| 60 | +``` |
| 61 | +${root}/examples |
| 62 | + └── app_tutorials |
| 63 | + └── model |
| 64 | + ├── lcn_model.npz |
| 65 | + └── pose_weights_config.txt |
| 66 | +``` |
| 67 | +Download finetuned Stacked Hourglass detections and preprocessed H3.6M data([H36M.rar][5],Password:`kw9i`), then uncompress and put them under the folder `./examples/app_tutorials/data/`, like: |
| 68 | +``` |
| 69 | +${root}/examples |
| 70 | + └──app_tutorials |
| 71 | + └──data |
| 72 | + ├── h36m_sh_dt_ft.pkl |
| 73 | + ├── h36m_test.pkl |
| 74 | + └── h36m_train.pkl |
| 75 | +``` |
| 76 | +Each sample is a list with the length of 34 in three `.pkl` files. The list represents `[x,y]` of 17 human pose points: |
| 77 | +<p align="center"><img src="../../docs/images/human_pose_points.jpg" width="300"\></p> |
| 78 | + |
| 79 | +If you would like to know how to prepare the H3.6M data, please have a look at the [pose_lcn][6]. |
| 80 | + |
| 81 | +### Demo |
| 82 | + |
| 83 | +For a quick demo, simply run |
| 84 | + |
| 85 | +```bash |
| 86 | +python tutorial_human_3dpose_estimation_LCN.py |
| 87 | +``` |
| 88 | +This will produce a visualization similar to this: |
| 89 | +<p align="center"><img src="../../docs/images/3d_human_pose_result.jpg" width="1500"\></p> |
| 90 | + |
| 91 | +This demo maps 2D poses to 3D space. Each 3D space result list represents `[x,y,z]` of 17 human pose points. |
| 92 | + |
| 93 | +# Acknowledgement |
| 94 | + |
| 95 | +Yolov4 is bulit on https://github.com/AlexeyAB/darknet and https://github.com/hunglc007/tensorflow-yolov4-tflite. |
| 96 | +3D Human Pose Estimation is bulit on https://github.com/rujiewu/pose_lcn and https://github.com/una-dinosauria/3d-pose-baseline. |
| 97 | +We would like to thank the authors for publishing their code. |
| 98 | + |
| 99 | + |
| 100 | +[1]:https://arxiv.org/abs/2004.10934 |
| 101 | +[2]:https://openaccess.thecvf.com/content_ICCV_2019/papers/Ci_Optimizing_Network_Structure_for_3D_Human_Pose_Estimation_ICCV_2019_paper.pdf |
| 102 | +[3]:https://pan.baidu.com/s/1MC1dmEwpxsdgHO1MZ8fYRQ |
| 103 | +[4]:https://pan.baidu.com/s/1HBHWsAfyAlNaavw0iyUmUQ |
| 104 | +[5]:https://pan.baidu.com/s/1nA96AgMsvs1sFqkTs7Dfaw |
| 105 | +[6]:https://github.com/rujiewu/pose_lcn |
0 commit comments