-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathmnist_sequential.py
56 lines (43 loc) · 1.81 KB
/
mnist_sequential.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#! /usr/bin/python
# -*- coding: utf-8 -*-
import os
# os.environ['TL_BACKEND'] = 'tensorflow'
# os.environ['TL_BACKEND'] = 'mindspore'
# os.environ['TL_BACKEND'] = 'paddle'
# os.environ['TL_BACKEND'] = 'jittor'
os.environ['TL_BACKEND'] = 'torch'
from tensorlayerx.nn import Sequential
from tensorlayerx.nn import Linear
import tensorlayerx as tlx
from tensorlayerx.dataflow import Dataset
layer_list = []
layer_list.append(Linear(out_features=800, act=tlx.nn.ReLU, in_features=784, name='linear1'))
layer_list.append(Linear(out_features=800, act=tlx.nn.ReLU, in_features=800, name='linear2'))
layer_list.append(Linear(out_features=10, act=tlx.nn.ReLU, in_features=800, name='linear3'))
MLP = Sequential(layer_list)
X_train, y_train, X_val, y_val, X_test, y_test = tlx.files.load_mnist_dataset(shape=(-1, 784))
class mnistdataset(Dataset):
def __init__(self, data=X_train, label=y_train):
self.data = data
self.label = label
def __getitem__(self, index):
data = self.data[index].astype('float32')
label = self.label[index].astype('int64')
return data, label
def __len__(self):
return len(self.data)
n_epoch = 50
batch_size = 128
print_freq = 2
shuffle_buffer_size = 128
train_weights = MLP.trainable_weights
optimizer = tlx.optimizers.Momentum(0.05, 0.9)
train_dataset = mnistdataset(data=X_train, label=y_train)
train_loader = tlx.dataflow.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
metric = tlx.metrics.Accuracy()
model = tlx.model.Model(
network=MLP, loss_fn=tlx.losses.softmax_cross_entropy_with_logits, optimizer=optimizer, metrics=metric
)
model.train(n_epoch=n_epoch, train_dataset=train_loader, print_freq=print_freq, print_train_batch=False)
model.save_weights('./model.npz', format='npz_dict')
model.load_weights('./model.npz', format='npz_dict')