@@ -33,17 +33,17 @@ def __init__(self):
33
33
b_init2 = tlx .nn .initializers .constant (value = 0.1 )
34
34
35
35
self .conv1 = Conv2d (64 , (5 , 5 ), (1 , 1 ), padding = 'SAME' , W_init = W_init , b_init = None , name = 'conv1' , in_channels = 3 )
36
- self .bn = BatchNorm2d (num_features = 64 , act = tlx .ReLU )
36
+ self .bn = BatchNorm2d (num_features = 64 , act = tlx .nn . ReLU )
37
37
self .maxpool1 = MaxPool2d ((3 , 3 ), (2 , 2 ), padding = 'SAME' , name = 'pool1' )
38
38
39
39
self .conv2 = Conv2d (
40
- 64 , (5 , 5 ), (1 , 1 ), padding = 'SAME' , act = tlx .ReLU , W_init = W_init , b_init = None , name = 'conv2' , in_channels = 64
40
+ 64 , (5 , 5 ), (1 , 1 ), padding = 'SAME' , act = tlx .nn . ReLU , W_init = W_init , b_init = None , name = 'conv2' , in_channels = 64
41
41
)
42
42
self .maxpool2 = MaxPool2d ((3 , 3 ), (2 , 2 ), padding = 'SAME' , name = 'pool2' )
43
43
44
44
self .flatten = Flatten (name = 'flatten' )
45
- self .linear1 = Linear (384 , act = tlx .ReLU , W_init = W_init2 , b_init = b_init2 , name = 'linear1relu' , in_features = 2304 )
46
- self .linear2 = Linear (192 , act = tlx .ReLU , W_init = W_init2 , b_init = b_init2 , name = 'linear2relu' , in_features = 384 )
45
+ self .linear1 = Linear (384 , act = tlx .nn . ReLU , W_init = W_init2 , b_init = b_init2 , name = 'linear1relu' , in_features = 2304 )
46
+ self .linear2 = Linear (192 , act = tlx .nn . ReLU , W_init = W_init2 , b_init = b_init2 , name = 'linear2relu' , in_features = 384 )
47
47
self .linear3 = Linear (10 , act = None , W_init = W_init2 , name = 'output' , in_features = 192 )
48
48
49
49
def forward (self , x ):
@@ -179,17 +179,17 @@ def forward(self, data, label):
179
179
# b_init2 = tlx.nn.initializers.constant(value=0.1)
180
180
#
181
181
# self.conv1 = Conv2d(64, (5, 5), (1, 1), padding='SAME', W_init=W_init, b_init=None, name='conv1', in_channels=3)
182
- # self.bn = BatchNorm2d(num_features=64, act=tlx.ReLU)
182
+ # self.bn = BatchNorm2d(num_features=64, act=tlx.nn. ReLU)
183
183
# self.maxpool1 = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool1')
184
184
#
185
185
# self.conv2 = Conv2d(
186
- # 64, (5, 5), (1, 1), padding='SAME', act=tlx.ReLU, W_init=W_init, b_init=None, name='conv2', in_channels=64
186
+ # 64, (5, 5), (1, 1), padding='SAME', act=tlx.nn. ReLU, W_init=W_init, b_init=None, name='conv2', in_channels=64
187
187
# )
188
188
# self.maxpool2 = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool2')
189
189
#
190
190
# self.flatten = Flatten(name='flatten')
191
- # self.linear1 = Linear(384, act=tlx.ReLU, W_init=W_init2, b_init=b_init2, name='linear1relu', in_channels=2304)
192
- # self.linear2 = Linear(192, act=tlx.ReLU, W_init=W_init2, b_init=b_init2, name='linear2relu', in_channels=384)
191
+ # self.linear1 = Linear(384, act=tlx.nn. ReLU, W_init=W_init2, b_init=b_init2, name='linear1relu', in_channels=2304)
192
+ # self.linear2 = Linear(192, act=tlx.nn. ReLU, W_init=W_init2, b_init=b_init2, name='linear2relu', in_channels=384)
193
193
# self.linear3 = Linear(10, act=None, W_init=W_init2, name='output', in_channels=192)
194
194
#
195
195
# def forward(self, x):
@@ -364,18 +364,18 @@ def forward(self, data, label):
364
364
# def __init__(self):
365
365
# super(CNN, self).__init__()
366
366
# self.conv1 = Conv2d(
367
- # 64, (5, 5), (2, 2), b_init=None, name='conv1', in_channels=3, act=tlx.ReLU, data_format='channels_first'
367
+ # 64, (5, 5), (2, 2), b_init=None, name='conv1', in_channels=3, act=tlx.nn. ReLU, data_format='channels_first'
368
368
# )
369
- # self.bn = BatchNorm2d(num_features=64, act=tlx.ReLU, data_format='channels_first')
369
+ # self.bn = BatchNorm2d(num_features=64, act=tlx.nn. ReLU, data_format='channels_first')
370
370
# self.maxpool1 = MaxPool2d((3, 3), (2, 2), name='pool1', data_format='channels_first')
371
371
# self.conv2 = Conv2d(
372
- # 128, (5, 5), (2, 2), act=tlx.ReLU, b_init=None, name='conv2', in_channels=64, data_format='channels_first'
372
+ # 128, (5, 5), (2, 2), act=tlx.nn. ReLU, b_init=None, name='conv2', in_channels=64, data_format='channels_first'
373
373
# )
374
374
# self.maxpool2 = MaxPool2d((3, 3), (2, 2), name='pool2', data_format='channels_first')
375
375
#
376
376
# self.flatten = Flatten(name='flatten')
377
- # self.linear1 = Linear(120, act=tlx.ReLU, name='linear1relu', in_channels=512)
378
- # self.linear2 = Linear(84, act=tlx.ReLU, name='linear2relu', in_channels=120)
377
+ # self.linear1 = Linear(120, act=tlx.nn. ReLU, name='linear1relu', in_channels=512)
378
+ # self.linear2 = Linear(84, act=tlx.nn. ReLU, name='linear2relu', in_channels=120)
379
379
# self.linear3 = Linear(10, act=None, name='output', in_channels=84)
380
380
#
381
381
# def forward(self, x):
@@ -509,18 +509,18 @@ def forward(self, data, label):
509
509
# b_init2 = tlx.nn.initializers.constant(value=0.1)
510
510
#
511
511
# self.conv1 = Conv2d(64, (5, 5), (1, 1), padding='SAME', W_init=W_init, b_init=None, name='conv1', in_channels=3)
512
- # self.bn1 = BatchNorm2d(num_features=64, act=tlx.ReLU)
512
+ # self.bn1 = BatchNorm2d(num_features=64, act=tlx.nn. ReLU)
513
513
# self.maxpool1 = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool1')
514
514
#
515
515
# self.conv2 = Conv2d(
516
516
# 64, (5, 5), (1, 1), padding='SAME', W_init=W_init, b_init=None, name='conv2', in_channels=64
517
517
# )
518
- # self.bn2 = BatchNorm2d(num_features=64, act=tlx.ReLU)
518
+ # self.bn2 = BatchNorm2d(num_features=64, act=tlx.nn. ReLU)
519
519
# self.maxpool2 = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool2')
520
520
#
521
521
# self.flatten = Flatten(name='flatten')
522
- # self.linear1 = Linear(384, act=tlx.ReLU, W_init=W_init2, b_init=b_init2, name='linear1relu', in_channels=2304)
523
- # self.linear2 = Linear(192, act=tlx.ReLU, W_init=W_init2, b_init=b_init2, name='linear2relu', in_channels=384)
522
+ # self.linear1 = Linear(384, act=tlx.nn. ReLU, W_init=W_init2, b_init=b_init2, name='linear1relu', in_channels=2304)
523
+ # self.linear2 = Linear(192, act=tlx.nn. ReLU, W_init=W_init2, b_init=b_init2, name='linear2relu', in_channels=384)
524
524
# self.linear3 = Linear(10, act=None, W_init=W_init2, name='output', in_channels=192)
525
525
#
526
526
# def forward(self, x):
0 commit comments