-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathuci_comparison.py
92 lines (80 loc) · 3.69 KB
/
uci_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import numpy as np
from sklearn.metrics.classification import accuracy_score, f1_score
import re, string
from uci_loader import getdataset, tonumeric
from sklearn.cross_validation import KFold
from scipy.stats.stats import mannwhitneyu, ttest_ind
comparison_datasets = [
"breast-cancer",
"datasets-UCI breast-w",
"datasets-UCI credit-g",
"uci-20070111 haberman",
"heart",
"ionosphere",
"uci-20070111 labor",
"liver-disorders",
"uci-20070111 tic-tac-toe",
"datasets-UCI vote"
]
metrics = {
#'Acc.': accuracy_score,
'F1score': f1_score
}
def shorten(d):
return "".join(re.findall("[^\W\d_]", d.lower().replace('datasets-', '').replace('uci', '')))
def print_results_table(results, rows, cols, cellsize=20):
row_format =("{:>"+str(cellsize)+"}") * (len(cols) + 1)
print row_format.format("", *cols)
print "".join(["="]*cellsize*(len(cols)+1))
for rh, row in zip(rows, results):
print row_format.format(rh, *row)
def compare_estimators(estimators, datasets = comparison_datasets, metrics = metrics, n_cv_folds = 10, decimals = 3, cellsize = 22):
if type(estimators) != dict:
raise Exception("First argument needs to be a dict containing 'name': Estimator pairs")
if type(metrics) != dict:
raise Exception("Argument metrics needs to be a dict containing 'name': scoring function pairs")
cols = []
for e in range(len(estimators)):
for mname in metrics.keys():
cols.append(sorted(estimators.keys())[e]+" "+mname)
rows = []
mean_results = []
std_results = []
for d in datasets:
print "comparing on dataset",d
mean_result = []
std_result = []
X, y = getdataset(d)
rows.append(shorten(d)+" (n="+str(len(y))+")")
for e in range(len(estimators.keys())):
est = estimators[sorted(estimators.keys())[e]]
mresults = [[] for i in range(len(metrics))]
for train_idx, test_idx in KFold(len(y), n_folds=n_cv_folds):
est.fit(X[train_idx, :], y[train_idx])
y_pred = est.predict(X[test_idx, :])
for i in range(len(metrics)):
try:
mresults[i].append(metrics.values()[i](y[test_idx], y_pred))
except:
mresults[i].append(metrics.values()[i](tonumeric(y[test_idx]), tonumeric(y_pred)))
for i in range(len(metrics)):
mean_result.append(np.mean(mresults[i]))
std_result.append(np.std(mresults[i])/n_cv_folds)
mean_results.append(mean_result)
std_results.append(std_result)
results = []
for i in range(len(datasets)):
result = []
sigstars = ["*"]*(len(estimators)*len(metrics))
for j in range(len(estimators)):
for k in range(len(metrics)):
for l in range(len(estimators)):
#if j != l and mean_results[i][j*len(metrics)+k] < mean_results[i][l*len(metrics)+k] + 2*(std_results[i][j*len(metrics)+k] + std_results[i][l*len(metrics)+k]):
if j != l and mean_results[i][j*len(metrics)+k] < mean_results[i][l*len(metrics)+k]:
sigstars[j*len(metrics)+k] = ""
for j in range(len(estimators)):
for k in range(len(metrics)):
result.append((sigstars[j*len(metrics)+k]+"%."+str(decimals)+"f (SE=%."+str(decimals)+"f)") % (mean_results[i][j*len(metrics)+k], std_results[i][j*len(metrics)+k]))
results.append(result)
print_results_table(results, rows, cols, cellsize)
return mean_results, std_results, results