forked from open-telemetry/opentelemetry-python-contrib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsampleapp.py
114 lines (92 loc) · 3.14 KB
/
sampleapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
import sys
import time
from logging import INFO
import psutil
from opentelemetry import metrics
from opentelemetry.exporter.prometheus_remote_write import (
PrometheusRemoteWriteMetricsExporter,
)
from opentelemetry.metrics import Observation
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logger = logging.getLogger(__name__)
testing_labels = {"environment": "testing"}
exporter = PrometheusRemoteWriteMetricsExporter(
endpoint="http://cortex:9009/api/prom/push",
headers={"X-Scope-Org-ID": "5"},
)
reader = PeriodicExportingMetricReader(exporter, 1000)
provider = MeterProvider(metric_readers=[reader])
metrics.set_meter_provider(provider)
meter = metrics.get_meter(__name__)
# Callback to gather cpu usage
def get_cpu_usage_callback(observer):
for number, percent in enumerate(psutil.cpu_percent(percpu=True)):
labels = {"cpu_number": str(number)}
yield Observation(percent, labels)
# Callback to gather RAM usage
def get_ram_usage_callback(observer):
ram_percent = psutil.virtual_memory().percent
yield Observation(ram_percent, {})
requests_counter = meter.create_counter(
name="requests",
description="number of requests",
unit="1",
)
request_min_max = meter.create_counter(
name="requests_min_max",
description="min max sum count of requests",
unit="1",
)
request_last_value = meter.create_counter(
name="requests_last_value",
description="last value number of requests",
unit="1",
)
requests_active = meter.create_up_down_counter(
name="requests_active",
description="number of active requests",
unit="1",
)
meter.create_observable_counter(
callbacks=[get_ram_usage_callback],
name="ram_usage",
description="ram usage",
unit="1",
)
meter.create_observable_up_down_counter(
callbacks=[get_cpu_usage_callback],
name="cpu_percent",
description="per-cpu usage",
unit="1",
)
request_latency = meter.create_histogram("request_latency")
# Load generator
num = random.randint(0, 1000)
while True:
# counters
requests_counter.add(num % 131 + 200, testing_labels)
request_min_max.add(num % 181 + 200, testing_labels)
request_last_value.add(num % 101 + 200, testing_labels)
# updown counter
requests_active.add(num % 7231 + 200, testing_labels)
request_latency.record(num % 92, testing_labels)
logger.log(level=INFO, msg="completed metrics collection cycle")
time.sleep(1)
num += 9791