|
| 1 | +-- Imagenet classification with Torch7 demo |
| 2 | +require 'loadcaffe' |
| 3 | +require 'image' |
| 4 | + |
| 5 | +-- Helper functions |
| 6 | + |
| 7 | +-- Loads the mapping from net outputs to human readable labels |
| 8 | +function load_synset() |
| 9 | + local file = io.open 'synset_words.txt' |
| 10 | + local list = {} |
| 11 | + while true do |
| 12 | + local line = file:read() |
| 13 | + if not line then break end |
| 14 | + table.insert(list, string.sub(line,11)) |
| 15 | + end |
| 16 | + return list |
| 17 | +end |
| 18 | + |
| 19 | + |
| 20 | +-- Converts an image from RGB to BGR format and subtracts mean |
| 21 | +function preprocess(im, img_mean) |
| 22 | + -- rescale the image |
| 23 | + local im3 = image.scale(im,227,227,'bilinear')*255 |
| 24 | + -- RGB2BGR |
| 25 | + local im4 = im3:clone() |
| 26 | + im4[{1,{},{}}] = im3[{3,{},{}}] |
| 27 | + im4[{3,{},{}}] = im3[{1,{},{}}] |
| 28 | + |
| 29 | + -- subtract imagenet mean |
| 30 | + return im4 - image.scale(img_mean, 227, 227, 'bilinear') |
| 31 | +end |
| 32 | + |
| 33 | + |
| 34 | + |
| 35 | +-- Setting up networks and downloading stuff if needed |
| 36 | +proto_name = 'deploy.prototxt' |
| 37 | +model_name = 'bvlc_reference_caffenet.caffemodel' |
| 38 | +img_mean_name = 'ilsvrc_2012_mean.t7' |
| 39 | +image_name = 'Goldfish3.jpg' |
| 40 | + |
| 41 | +prototxt_url = 'https://raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_reference_caffenet/'..proto_name |
| 42 | +model_url = 'http://dl.caffe.berkeleyvision.org/'..model_name |
| 43 | +img_mean_url = 'https://www.dropbox.com/s/p33rheie3xjx6eu/'..img_mean_name |
| 44 | +image_url = 'http://upload.wikimedia.org/wikipedia/commons/e/e9/Goldfish3.jpg' |
| 45 | + |
| 46 | +if not paths.filep(proto_name) then os.execute('wget '..prototxt_url) end |
| 47 | +if not paths.filep(model_name) then os.execute('wget '..model_url) end |
| 48 | +if not paths.filep(img_mean_name) then os.execute('wget '..img_mean_url) end |
| 49 | +if not paths.filep(image_name) then os.execute('wget '..image_url) end |
| 50 | + |
| 51 | + |
| 52 | + |
| 53 | +print '==> Loading network' |
| 54 | +-- we'll use the fastest CUDA ConvNet implementation available, cuda-convnet2 |
| 55 | +-- this loads the network in Caffe format and returns in Torch format, ready to use! |
| 56 | +net = loadcaffe.load(proto_name, model_name, 'ccn2') |
| 57 | + |
| 58 | +-- as we want to classify, let's disable dropouts by enabling evaluation mode |
| 59 | +net:evaluate() |
| 60 | + |
| 61 | +print '==> Loading synsets' |
| 62 | +synset_words = load_synset() |
| 63 | + |
| 64 | +print '==> Loading image and imagenet mean' |
| 65 | +im = image.load(image_name) |
| 66 | +img_mean = torch.load(img_mean_name).img_mean:transpose(3,1) |
| 67 | + |
| 68 | +print '==> Preprocessing' |
| 69 | +-- Have to resize and convert from RGB to BGR and subtract mean |
| 70 | +I = preprocess(im, img_mean) |
| 71 | + |
| 72 | +-- cuda-convnet2 implementation support only batched routines, so |
| 73 | +-- we have to allocate memory for 32 inputs and then put crops to 10 of them. |
| 74 | +-- let's however use just one image for simplicity. |
| 75 | +-- note that for other networks that use cunn ore cudnn that might not be needed |
| 76 | +batch = torch.CudaTensor(32,3,227,227) |
| 77 | +batch[1]:copy(I) |
| 78 | + |
| 79 | +print '==> Propagating through the network' |
| 80 | +net:forward(batch) |
| 81 | + |
| 82 | +-- for the outputs of SoftMax layer sort them in decreasing order |
| 83 | +_,classes = net:get(25).output[{1,{}}]:float():sort(true) |
| 84 | +for i=1,5 do |
| 85 | + print('predicted class '..tostring(i)..': ', synset_words[classes[i]]) |
| 86 | +end |
0 commit comments