|
| 1 | +/** |
| 2 | + * Calculates calculate the euclidean distance between 2 vectors. |
| 3 | + * |
| 4 | + * @param {number[]} x1 |
| 5 | + * @param {number[]} x2 |
| 6 | + * @returns {number} |
| 7 | + */ |
| 8 | +function euclideanDistance(x1, x2) { |
| 9 | + // Checking for errors. |
| 10 | + if (x1.length !== x2.length) { |
| 11 | + throw new Error('Inconsistent vector lengths'); |
| 12 | + } |
| 13 | + // Calculate the euclidean distance between 2 vectors and return. |
| 14 | + let squaresTotal = 0; |
| 15 | + for (let i = 0; i < x1.length; i += 1) { |
| 16 | + squaresTotal += (x1[i] - x2[i]) ** 2; |
| 17 | + } |
| 18 | + return Number(Math.sqrt(squaresTotal).toFixed(2)); |
| 19 | +} |
| 20 | +/** |
| 21 | + * Classifies the point in space based on k-nearest neighbors algorithm. |
| 22 | + * |
| 23 | + * @param {number[][]} dataSet - array of dataSet points, i.e. [[0, 1], [3, 4], [5, 7]] |
| 24 | + * @param {number} k - number of nearest neighbors which will be taken into account (preferably odd) |
| 25 | + * @return {number[]} - the class of the point |
| 26 | + */ |
| 27 | +export default function kMeans( |
| 28 | + dataSetm, |
| 29 | + k = 1, |
| 30 | +) { |
| 31 | + const dataSet = dataSetm; |
| 32 | + if (!dataSet) { |
| 33 | + throw new Error('Either dataSet or labels or toClassify were not set'); |
| 34 | + } |
| 35 | + |
| 36 | + // starting algorithm |
| 37 | + // assign k clusters locations equal to the location of initial k points |
| 38 | + const clusterCenters = []; |
| 39 | + const nDim = dataSet[0].length; |
| 40 | + for (let i = 0; i < k; i += 1) { |
| 41 | + clusterCenters[clusterCenters.length] = Array.from(dataSet[i]); |
| 42 | + } |
| 43 | + |
| 44 | + // continue optimization till convergence |
| 45 | + // centroids should not be moving once optimized |
| 46 | + // calculate distance of each candidate vector from each cluster center |
| 47 | + // assign cluster number to each data vector according to minimum distance |
| 48 | + let flag = true; |
| 49 | + while (flag) { |
| 50 | + flag = false; |
| 51 | + // calculate and store distance of each dataSet point from each cluster |
| 52 | + for (let i = 0; i < dataSet.length; i += 1) { |
| 53 | + for (let n = 0; n < k; n += 1) { |
| 54 | + dataSet[i][nDim + n] = euclideanDistance(clusterCenters[n], dataSet[i].slice(0, nDim)); |
| 55 | + } |
| 56 | + |
| 57 | + // assign the cluster number to each dataSet point |
| 58 | + const sliced = dataSet[i].slice(nDim, nDim + k); |
| 59 | + let minmDistCluster = Math.min(...sliced); |
| 60 | + for (let j = 0; j < sliced.length; j += 1) { |
| 61 | + if (minmDistCluster === sliced[j]) { |
| 62 | + minmDistCluster = j; |
| 63 | + break; |
| 64 | + } |
| 65 | + } |
| 66 | + |
| 67 | + if (dataSet[i].length !== nDim + k + 1) { |
| 68 | + flag = true; |
| 69 | + dataSet[i][nDim + k] = minmDistCluster; |
| 70 | + } else if (dataSet[i][nDim + k] !== minmDistCluster) { |
| 71 | + flag = true; |
| 72 | + dataSet[i][nDim + k] = minmDistCluster; |
| 73 | + } |
| 74 | + } |
| 75 | + // recalculate cluster centriod values via all dimensions of the points under it |
| 76 | + for (let i = 0; i < k; i += 1) { |
| 77 | + clusterCenters[i] = Array(nDim).fill(0); |
| 78 | + let classCount = 0; |
| 79 | + for (let j = 0; j < dataSet.length; j += 1) { |
| 80 | + if (dataSet[j][dataSet[j].length - 1] === i) { |
| 81 | + classCount += 1; |
| 82 | + for (let n = 0; n < nDim; n += 1) { |
| 83 | + clusterCenters[i][n] += dataSet[j][n]; |
| 84 | + } |
| 85 | + } |
| 86 | + } |
| 87 | + for (let n = 0; n < nDim; n += 1) { |
| 88 | + clusterCenters[i][n] = Number((clusterCenters[i][n] / classCount).toFixed(2)); |
| 89 | + } |
| 90 | + } |
| 91 | + } |
| 92 | + // return the clusters assigned |
| 93 | + const soln = []; |
| 94 | + for (let i = 0; i < dataSet.length; i += 1) { |
| 95 | + soln.push(dataSet[i][dataSet[i].length - 1]); |
| 96 | + } |
| 97 | + return soln; |
| 98 | +} |
0 commit comments