-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathgen_models.py
executable file
·90 lines (75 loc) · 3.28 KB
/
gen_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/python
# Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import torch
import torch.nn as nn
class SumModule(nn.Module):
def __init__(self, device):
super(SumModule, self).__init__()
self.device = device
def forward(self, INPUT0, INPUT1):
INPUT0 = INPUT0.to(self.device)
INPUT1 = INPUT1.to(self.device)
print(
"SumModule - INPUT0 device: {}, INPUT1 device: {}\n".format(
INPUT0.device, INPUT1.device
)
)
return INPUT0 + INPUT1
class DiffModule(nn.Module):
def __init__(self, device):
super(DiffModule, self).__init__()
self.device = device
def forward(self, INPUT0, INPUT1):
INPUT0 = INPUT0.to(self.device)
INPUT1 = INPUT1.to(self.device)
print(
"DiffModule - INPUT0 device: {}, INPUT1 device: {}\n".format(
INPUT0.device, INPUT1.device
)
)
return INPUT0 - INPUT1
class TestModel(nn.Module):
def __init__(self, device0, device1):
super(TestModel, self).__init__()
self.device0 = device0
self.device1 = device1
self.layer1 = SumModule(self.device0)
self.layer2 = DiffModule(self.device1)
def forward(self, INPUT0, INPUT1):
op0 = self.layer1(INPUT0, INPUT1)
op1 = self.layer2(INPUT0, INPUT1)
return op0, op1
if torch.cuda.device_count() < 4:
print("Need at least 4 GPUs to run this test")
exit(1)
devices = [("cuda:2", "cuda:0"), ("cpu", "cuda:3")]
model_names = ["libtorch_multi_gpu", "libtorch_multi_device"]
for device_pair, model_name in zip(devices, model_names):
model = TestModel(device_pair[0], device_pair[1])
model_path = "models/" + model_name + "/1/model.pt"
scripted_model = torch.jit.script(model)
scripted_model.save(model_path)