
BLAS Implementation Blueprint for STDLIB

Breakdown of BLAS routines (according to the current

tracking issue #2039)

Total no. of packages:

Level 1:

• Double Precision : 14

• Single Precision : 14

• Complex Double Precision: 11

• Complex Single Precision: 11

Total no. of Level 1 Packages: 50

Level 2:

• Double Precision : 16

• Single Precision : 16

• Complex Double Precision: 17

• Complex Single Precision: 17

 Total no. of Level 2 Packages: 66

Level 3:

• Double Precision : 6

• Single Precision : 6

• Complex Double Precision: 9

• Complex Single Precision: 9

 Total no. of Level 3 Packages: 30

Total : 146 Packages

Implemented packages:

Only Javascript Implemented:

Level 1:

• Double Precision : 1

• Single Precision : 1

• Complex Double Precision: 1

• Complex Single Precision: 1

Total no. of Level 1 Packages: 4

Level 2:

• Double Precision : 8

• Single Precision : 8

• Complex Double Precision: 0

• Complex Single Precision: 0

 Total no. of Level 2 Packages: 16

Level 3:

• Double Precision : 1

• Single Precision : 1

• Complex Double Precision: 0

• Complex Single Precision: 0

 Total no. of Level 3 Packages: 2

Total : 22 Packages

Fully Implemented(Javascript/C/FORTRAN):

Level 1:

• Double Precision : 12

• Single Precision : 12

• Complex Double Precision: 4

• Complex Single Precision: 5

Total no. of Level 1 Packages: 33

Level 2:

• Double Precision : 0

• Single Precision : 0

• Complex Double Precision: 0

• Complex Single Precision: 0

 Total no. of Level 2 Packages: 0

Level 3:

• Double Precision : 0

• Single Precision : 0

• Complex Double Precision: 0

• Complex Single Precision: 0

 Total no. of Level 3 Packages: 0

Total : 33 Package

WebAssembly packages:

This is the list of packages that already have a full

implementation but do not have a Web Assembly

implementation.

Has Pull Request:

• scasum

Does not have Pull Request:

• sswap

• sdsdot

• scnrm2

• dsdot

• dznrm2

• zscal

Note:

The above list does not take existing open pull requests

into account. Currently, we have 21 open pull requests to

the tracking issue(including only the feature pull requests

)

LAPACK Dependencies(according to issue #2464):

This is the list of BLAS Routines that are the

dependencies of the LAPACK routines.

Only Javascript Implemented:

 Has Pull Request:

 No such packages

 Does not have Request:

• dspr

• dtpmv

• dgemm

• dtrmv

No Implementation:

 Has Pull Request:

• dger

• dtpsv

• dtpmv

• dsymv

• dspmv

 Does not have Request:

• dtbsv

• dtrsm

• lsame (needs discussion)

Note:

I have marked lsame as needs discussion because I am

not sure about what the plan is behind that package, as it

has a FORTRAN implementation in stdlib, and what the

approach is for Javascript and C.

Implementation Plan for BLAS Routines

This will be the blueprint for how I am going to approach

the implementation. I have come up with this after making

several R&D with the maintainers, and I am open to

feedback on this.

Priority Order(Based on programming language):

Javascript > C > FORTRAN

Priority Order(Based on levels):

Level1 > Level 2 > Level 3

Priority Order(Based on Precision):

Double Precision > Single Precision > Double Precison

Complex > Single Precision Complex

Phase 1: (Implementation of LAPACK Dependencies)

During this phase, we will be focusing on the

implementation of packages that LAPACK routines need to

have. This will ensure that there is a smooth flow of

implementations in LAPACK routines, too.

First, we will be implementing the packages that need

Javascript implementations and then heading towards

C/FORTRAN implementations.

Phase 2: (Implementation of Level 1 Routines)

In Level 1, there are only C/FORTRAN implementations

for drotg, drotmg, srotg, srotmg (including the open pull

requests. There is a draft pull request #4762 which we

need to look at.

After we need to get into implementing Javascript

implementations first for double precision and then single

precision complex, and then their C/FORTRAN

implementations.

Phase 3: (Implementation of Level 2 (Real Routines))

At this phase, we will move on to the Level 2 routines,

specifically double precision and single precision ones,

same as others, first the Javascript ones and then C and

FORTRAN

Phase 4: (Implementation of Level 3 (Real Routines))

At this phase, we will move to implement double precision

and single precision of Level 3 with the same priority order

of languages. This priority is chosen because of the wide

usage of real values over complex ones.

Phase 5: (Implementation of Level 2 (Complex Routines))

At this phase, we will implement double precision complex

and single precision complex ones with the same priority

order as the others.

Phase 6: (Implementation of Level 3 (Complex Routines))

At this phase, we will implement double precision complex

and single precision complex of Level 3 with the same

priority order of languages.

Additional Works:

• Add Web Assembly Implementations

• Improvement of implemented JSDoc to current stdlib

standards

• Add documented fixtures as a reference for the user's

view of matrices

• Need to know more about how cdotu and zdotu

should be implemented based on higher-order

implementation or lower-order implementation.

Note:

• The information given here is what I observed till the

29th March. The information may vary because of

contributions after that.

• Currently, FORTRAN implementations for level 2 and

level 3 have been blocked, so we need to implement

pure C after javascript, which enables us to

implement the WebAssembly for that particular

package.

