BLAS Implementation Blueprint for STDLIB

Breakdown of BLAS routines (according to the current
tracking issue #2039)

Total no. of packages:

Level 1:

® Double Precision : 14
® Single Precision : 14
e Complex Double Precision: 11

e Complex Single Precision: 11

Total no. of Level 1 Packages: 50

Level 2:

® Double Precision : 16
® Single Precision : 16

e Complex Double Precision: 17

e Complex Single Precision: 17

Total no. of Level 2 Packages: 66

Level 3;

® Double Precision : 6

® Single Precision : 6

e Complex Double Precision: 9

e Complex Single Precision: 9

Total no. of Level 3 Packages: 30

Total : 146 Packages

Implemented packages:

Only Javascript Implemented:

Level 1:

® Double Precision : 1
® Single Precision : 1
e Complex Double Precision: 1

e Complex Single Precision: 1

Total no. of Level 1 Packages: 4

Level 2:

® Double Precision : 8
® Single Precision : 8
e Complex Double Precision: 0

e Complex Single Precision: O

Total no. of Level 2 Packages: 16

Level 3:

® Double Precision : 1

® Single Precision : 1

e Complex Double Precision: 0

e Complex Single Precision: O

Total no. of Level 3 Packages: 2

Total : 22 Packages

Fully Implemented(Javascript/C/FORTRAN):

Level 1:

® Double Precision : 12
® Single Precision : 12
e Complex Double Precision: 4

e Complex Single Precision: 5

Total no. of Level 1 Packages: 33

Level 2:

® Double Precision : 0
® Single Precision : 0
e Complex Double Precision: 0

e Complex Single Precision: O

Total no. of Level 2 Packages: 0

Level 3:

® Double Precision : 0

® Single Precision : 0

e Complex Double Precision: 0

e Complex Single Precision: O

Total no. of Level 3 Packages: O

Total : 33 Package

WebAssembly packages:

This is the list of packages that already have a full
implementation but do not have a Web Assembly
implementation.

Has Pull Request:
e scasum

Does not have Pull Request:
e Sswap

sdsdot

scnrmz2

dsdot

dznrm?2

e zscal

Note:

The above list does not take existing open pull requests
into account. Currently, we have 21 open pull requests to
the tracking issue(including only the feature pull requests

)

LAPACK Dependencies(according to issue #2464).

This is the list of BLAS Routines that are the
dependencies of the LAPACK routines.

Only Javascript Implemented:
Has Pull Request:

No such packages

Does not have Request:

e dspr

e dtpmv
e dgemm
e dtrmv

No Implementation:
Has Pull Request:

dger
dtpsv
dtpmv
dsymv
dspmv

Does not have Request:

e dtbsv
e dtrsm
¢ Isame (needs discussion)

Note:

| have marked Isame as needs discussion because | am
not sure about what the plan is behind that package, as it
has a FORTRAN implementation in stdlib, and what the
approach is for Javascript and C.

Implementation Plan for BLAS Routines

This will be the blueprint for how | am going to approach
the implementation. | have come up with this after making
several R&D with the maintainers, and | am open to
feedback on this.

Priority Order(Based on programming language):
Javascript > C > FORTRAN

Priority Order(Based on levels):

Levell > Level 2 > Level 3

Priority Order(Based on Precision):

Double Precision > Single Precision > Double Precison
Complex > Single Precision Complex

Phase 1. (Implementation of LAPACK Dependencies)

During this phase, we will be focusing on the
implementation of packages that LAPACK routines need to

have. This will ensure that there is a smooth flow of
implementations in LAPACK routines, too.

First, we will be implementing the packages that need
Javascript implementations and then heading towards
C/FORTRAN implementations.

Phase 2: (Implementation of Level 1 Routines)

In Level 1, there are only C/FORTRAN implementations
for drotg, drotmg, srotg, srotmg (including the open pull
requests. There is a draft pull request #4762 which we
need to look at.

After we need to get into implementing Javascript
implementations first for double precision and then single
precision complex, and then their C/FORTRAN
implementations.

Phase 3: (Implementation of Level 2 (Real Routines))

At this phase, we will move on to the Level 2 routines,
specifically double precision and single precision ones,
same as others, first the Javascript ones and then C and
FORTRAN

Phase 4: (Implementation of Level 3 (Real Routines))

At this phase, we will move to implement double precision
and single precision of Level 3 with the same priority order
of languages. This priority is chosen because of the wide
usage of real values over complex ones.

Phase 5: (Implementation of Level 2 (Complex Routines))

At this phase, we will implement double precision complex
and single precision complex ones with the same priority
order as the others.

Phase 6: (Implementation of Level 3 (Complex Routines))

At this phase, we will implement double precision complex
and single precision complex of Level 3 with the same
priority order of languages.

Additional Works:

. Add Web Assembly Implementations

- Improvement of implemented JSDoc to current stdlib
standards

. Add documented fixtures as a reference for the user's
view of matrices

. Need to know more about how cdotu and zdotu
should be implemented based on higher-order
implementation or lower-order implementation.

Note:

e The information given here is what | observed till the
29" March. The information may vary because of
contributions after that.

e Currently, FORTRAN implementations for level 2 and
level 3 have been blocked, so we need to implement
pure C after javascript, which enables us to
implement the WebAssembly for that particular
package.

