
Examples of operations that may use already present c
APIs -

NOTE – 1.This is assumption and would require more research

 2.These are not direct wraps but can be usefull

some -- @stdlib/ndarray/base/every

 every is already implemented in C and can be extended for mulƟ-axis
reducƟons.

 some is similar and can be implemented using a similar reducƟon
approach.

includes / indexOf / lastIndexOf -- @stdlib/ndarray/base/ind2sub +
@stdlib/ndarray/base/sub2ind

 Searching in ndarrays requires converƟng indices between different
views and buffer layouts.

 ind2sub and sub2ind help translate between 1D buffer indices and mulƟ-
dimensional indices.

copyWithin -- @stdlib/ndarray/base/assign

 Copying data efficiently is handled by assign, ensuring strided data is
properly transferred.

concat -- @stdlib/ndarray/base/assign + @stdlib/ndarray/base/numel

 assign can be used to copy concatenated data efficiently.

 numel helps calculate memory allocaƟon needs before concatenaƟon.

reduce / reduceRight -- @stdlib/ndarray/base/unary-accumulate

 ReducƟons accumulate results across axes, and unary-accumulate may
help opƟmize this.

flat / flatMap -- @stdlib/ndarray/base/shape2strides

 FlaƩening an array is mostly about reinterpreƟng its memory layout
without copying data.

 shape2strides helps compute how to lay out a flaƩened version
efficiently.

sort / toSorted -- @stdlib/ndarray/base/iteraƟon-order

 SorƟng needs efficient iteraƟon over the ndarray, which is handled by
iteraƟon-order.

 SorƟng could also leverage strides2order for memory-efficient in-place
sorƟng.

push / pop / shiŌ / unshiŌ -- @stdlib/ndarray/base/assign

 These operaƟons require moving data, which can be opƟmized using
assign.

