|
1 | 1 | class Solution {
|
2 |
| - public String longestPalindrome(String s) { |
3 |
| - int start = 0; |
4 |
| - int end = 0; |
5 |
| - for (int i = 0; i < s.length(); i++) { |
6 |
| - int lenOne = helper(s, i, i); |
7 |
| - int lenTwo = helper(s, i, i + 1); |
8 |
| - int maxLength = Math.max(lenOne, lenTwo); |
9 |
| - if (maxLength > end - start) { |
10 |
| - start = i - (maxLength - 1) / 2; |
11 |
| - end = i + maxLength / 2; |
12 |
| - } |
| 2 | + public String longestPalindrome(String s) { |
| 3 | + int n = s.length(); |
| 4 | + boolean[][] dp = new boolean[n][n]; |
| 5 | + int[] result = new int[]{0, 0}; |
| 6 | + for (int i = 0; i < n; i++) { |
| 7 | + dp[i][i] = true; |
| 8 | + } |
| 9 | + for (int i = 0; i < n - 1; i++) { |
| 10 | + if (s.charAt(i) == s.charAt(i + 1)) { |
| 11 | + dp[i][i + 1] = true; |
| 12 | + result[0] = i; |
| 13 | + result[1] = i + 1; |
| 14 | + } |
| 15 | + } |
| 16 | + for (int i = 2; i < n; i++) { |
| 17 | + for (int j = 0; j < n - i; j++) { |
| 18 | + int k = i + j; |
| 19 | + if (s.charAt(j) == s.charAt(k) && dp[j + 1][k - 1]) { |
| 20 | + dp[j][k] = true; |
| 21 | + result[0] = j; |
| 22 | + result[1] = k; |
| 23 | + } |
| 24 | + } |
| 25 | + } |
| 26 | + return s.substring(result[0], result[1] + 1); |
13 | 27 | }
|
14 |
| - return s.substring(start, end + 1); |
15 |
| - } |
16 |
| - |
17 |
| - private int helper(String s, int left, int right) { |
18 |
| - while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) { |
19 |
| - left--; |
20 |
| - right++; |
21 |
| - } |
22 |
| - return right - left - 1; |
23 |
| - } |
24 | 28 | }
|
0 commit comments