-
-
Notifications
You must be signed in to change notification settings - Fork 7.2k
/
Copy pathvision_language_multi_image.py
850 lines (705 loc) · 28.7 KB
/
vision_language_multi_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
# SPDX-License-Identifier: Apache-2.0
"""
This example shows how to use vLLM for running offline inference with
multi-image input on vision language models for text generation,
using the chat template defined by the model.
"""
import os
from argparse import Namespace
from dataclasses import asdict
from typing import NamedTuple, Optional
from huggingface_hub import snapshot_download
from PIL.Image import Image
from transformers import AutoProcessor, AutoTokenizer
from vllm import LLM, EngineArgs, SamplingParams
from vllm.lora.request import LoRARequest
from vllm.multimodal.utils import fetch_image
from vllm.utils import FlexibleArgumentParser
QUESTION = "What is the content of each image?"
IMAGE_URLS = [
"https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg",
"https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg",
"https://upload.wikimedia.org/wikipedia/commons/2/26/Ultramarine_Flycatcher_%28Ficedula_superciliaris%29_Naggar%2C_Himachal_Pradesh%2C_2013_%28cropped%29.JPG",
"https://upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Anim1754_-_Flickr_-_NOAA_Photo_Library_%281%29.jpg/2560px-Anim1754_-_Flickr_-_NOAA_Photo_Library_%281%29.jpg",
"https://upload.wikimedia.org/wikipedia/commons/d/d4/Starfish%2C_Caswell_Bay_-_geograph.org.uk_-_409413.jpg",
"https://upload.wikimedia.org/wikipedia/commons/6/69/Grapevinesnail_01.jpg",
"https://upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Texas_invasive_Musk_Thistle_1.jpg/1920px-Texas_invasive_Musk_Thistle_1.jpg",
"https://upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Huskiesatrest.jpg/2880px-Huskiesatrest.jpg",
"https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Orange_tabby_cat_sitting_on_fallen_leaves-Hisashi-01A.jpg/1920px-Orange_tabby_cat_sitting_on_fallen_leaves-Hisashi-01A.jpg",
"https://upload.wikimedia.org/wikipedia/commons/3/30/George_the_amazing_guinea_pig.jpg",
"https://upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Oryctolagus_cuniculus_Rcdo.jpg/1920px-Oryctolagus_cuniculus_Rcdo.jpg",
"https://upload.wikimedia.org/wikipedia/commons/9/98/Horse-and-pony.jpg",
]
class ModelRequestData(NamedTuple):
engine_args: EngineArgs
prompt: str
image_data: list[Image]
stop_token_ids: Optional[list[int]] = None
chat_template: Optional[str] = None
lora_requests: Optional[list[LoRARequest]] = None
# NOTE: The default `max_num_seqs` and `max_model_len` may result in OOM on
# lower-end GPUs.
# Unless specified, these settings have been tested to work on a single L4.
def load_aria(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "rhymes-ai/Aria"
engine_args = EngineArgs(
model=model_name,
tokenizer_mode="slow",
trust_remote_code=True,
dtype="bfloat16",
limit_mm_per_prompt={"image": len(image_urls)},
)
placeholders = "<fim_prefix><|img|><fim_suffix>\n" * len(image_urls)
prompt = (f"<|im_start|>user\n{placeholders}{question}<|im_end|>\n"
"<|im_start|>assistant\n")
stop_token_ids = [93532, 93653, 944, 93421, 1019, 93653, 93519]
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
stop_token_ids=stop_token_ids,
image_data=[fetch_image(url) for url in image_urls],
)
def load_aya_vision(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "CohereForAI/aya-vision-8b"
engine_args = EngineArgs(
model=model_name,
max_num_seqs=2,
limit_mm_per_prompt={"image": len(image_urls)},
)
placeholders = [{"type": "image", "image": url} for url in image_urls]
messages = [{
"role":
"user",
"content": [
*placeholders,
{
"type": "text",
"text": question
},
],
}]
processor = AutoProcessor.from_pretrained(model_name)
prompt = processor.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
)
def load_deepseek_vl2(question: str,
image_urls: list[str]) -> ModelRequestData:
model_name = "deepseek-ai/deepseek-vl2-tiny"
engine_args = EngineArgs(
model=model_name,
max_model_len=4096,
max_num_seqs=2,
hf_overrides={"architectures": ["DeepseekVLV2ForCausalLM"]},
limit_mm_per_prompt={"image": len(image_urls)},
)
placeholder = "".join(f"image_{i}:<image>\n"
for i, _ in enumerate(image_urls, start=1))
prompt = f"<|User|>: {placeholder}{question}\n\n<|Assistant|>:"
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
)
def load_gemma3(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "google/gemma-3-4b-it"
engine_args = EngineArgs(
model=model_name,
max_model_len=8192,
max_num_seqs=2,
limit_mm_per_prompt={"image": len(image_urls)},
)
placeholders = [{"type": "image", "image": url} for url in image_urls]
messages = [{
"role":
"user",
"content": [
*placeholders,
{
"type": "text",
"text": question
},
],
}]
processor = AutoProcessor.from_pretrained(model_name)
prompt = processor.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
)
def load_h2ovl(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "h2oai/h2ovl-mississippi-800m"
engine_args = EngineArgs(
model=model_name,
trust_remote_code=True,
max_model_len=8192,
limit_mm_per_prompt={"image": len(image_urls)},
mm_processor_kwargs={"max_dynamic_patch": 4},
)
placeholders = "\n".join(f"Image-{i}: <image>\n"
for i, _ in enumerate(image_urls, start=1))
messages = [{'role': 'user', 'content': f"{placeholders}\n{question}"}]
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
# Stop tokens for H2OVL-Mississippi
# https://huggingface.co/h2oai/h2ovl-mississippi-800m
stop_token_ids = [tokenizer.eos_token_id]
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
stop_token_ids=stop_token_ids,
image_data=[fetch_image(url) for url in image_urls],
)
def load_idefics3(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "HuggingFaceM4/Idefics3-8B-Llama3"
# The configuration below has been confirmed to launch on a single L40 GPU.
engine_args = EngineArgs(
model=model_name,
max_model_len=8192,
max_num_seqs=16,
enforce_eager=True,
limit_mm_per_prompt={"image": len(image_urls)},
# if you are running out of memory, you can reduce the "longest_edge".
# see: https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3#model-optimizations
mm_processor_kwargs={
"size": {
"longest_edge": 2 * 364
},
},
)
placeholders = "\n".join(f"Image-{i}: <image>\n"
for i, _ in enumerate(image_urls, start=1))
prompt = f"<|begin_of_text|>User:{placeholders}\n{question}<end_of_utterance>\nAssistant:" # noqa: E501
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
)
def load_smolvlm(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "HuggingFaceTB/SmolVLM2-2.2B-Instruct"
# The configuration below has been confirmed to launch on a single L40 GPU.
engine_args = EngineArgs(
model=model_name,
max_model_len=8192,
max_num_seqs=16,
enforce_eager=True,
limit_mm_per_prompt={"image": len(image_urls)},
mm_processor_kwargs={
"max_image_size": {
"longest_edge": 384
},
},
)
placeholders = "\n".join(f"Image-{i}: <image>\n"
for i, _ in enumerate(image_urls, start=1))
prompt = f"<|im_start|>User:{placeholders}\n{question}<end_of_utterance>\nAssistant:" # noqa: E501
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
)
def load_internvl(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "OpenGVLab/InternVL2-2B"
engine_args = EngineArgs(
model=model_name,
trust_remote_code=True,
max_model_len=4096,
limit_mm_per_prompt={"image": len(image_urls)},
mm_processor_kwargs={"max_dynamic_patch": 4},
)
placeholders = "\n".join(f"Image-{i}: <image>\n"
for i, _ in enumerate(image_urls, start=1))
messages = [{'role': 'user', 'content': f"{placeholders}\n{question}"}]
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
# Stop tokens for InternVL
# models variants may have different stop tokens
# please refer to the model card for the correct "stop words":
# https://huggingface.co/OpenGVLab/InternVL2-2B/blob/main/conversation.py
stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|end|>"]
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
stop_token_ids=stop_token_ids,
image_data=[fetch_image(url) for url in image_urls],
)
def load_llama4(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
engine_args = EngineArgs(
model=model_name,
max_model_len=131072,
tensor_parallel_size=8,
limit_mm_per_prompt={"image": len(image_urls)},
)
placeholders = [{"type": "image", "image": url} for url in image_urls]
messages = [{
"role":
"user",
"content": [
*placeholders,
{
"type": "text",
"text": question
},
],
}]
processor = AutoProcessor.from_pretrained(model_name)
prompt = processor.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
)
def load_kimi_vl(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "moonshotai/Kimi-VL-A3B-Instruct"
engine_args = EngineArgs(
model=model_name,
trust_remote_code=True,
max_model_len=4096,
max_num_seqs=4,
limit_mm_per_prompt={"image": len(image_urls)},
)
placeholders = [{"type": "image", "image": url} for url in image_urls]
messages = [{
"role":
"user",
"content": [
*placeholders,
{
"type": "text",
"text": question
},
],
}]
processor = AutoProcessor.from_pretrained(model_name,
trust_remote_code=True)
prompt = processor.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
)
def load_mistral3(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
# Adjust this as necessary to fit in GPU
engine_args = EngineArgs(
model=model_name,
max_model_len=8192,
max_num_seqs=2,
tensor_parallel_size=2,
limit_mm_per_prompt={"image": len(image_urls)},
)
placeholders = "[IMG]" * len(image_urls)
prompt = f"<s>[INST]{question}\n{placeholders}[/INST]"
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
)
def load_mllama(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
# The configuration below has been confirmed to launch on a single L40 GPU.
engine_args = EngineArgs(
model=model_name,
max_model_len=8192,
max_num_seqs=2,
limit_mm_per_prompt={"image": len(image_urls)},
)
img_prompt = "Given the first image <|image|> and the second image<|image|>"
prompt = f"<|begin_of_text|>{img_prompt}, {question}?"
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
)
def load_nvlm_d(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "nvidia/NVLM-D-72B"
# Adjust this as necessary to fit in GPU
engine_args = EngineArgs(
model=model_name,
trust_remote_code=True,
max_model_len=8192,
tensor_parallel_size=4,
limit_mm_per_prompt={"image": len(image_urls)},
mm_processor_kwargs={"max_dynamic_patch": 4},
)
placeholders = "\n".join(f"Image-{i}: <image>\n"
for i, _ in enumerate(image_urls, start=1))
messages = [{'role': 'user', 'content': f"{placeholders}\n{question}"}]
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
)
# Ovis2
def load_ovis2(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "AIDC-AI/Ovis2-1B"
tokenizer = "Isotr0py/Ovis2-tokenizer"
engine_args = EngineArgs(
model=model_name,
tokenizer=tokenizer,
max_model_len=8192,
max_num_seqs=2,
trust_remote_code=True,
dtype="half",
limit_mm_per_prompt={"image": len(image_urls)},
hf_overrides={"architectures": ["Ovis2ForConditionalGeneration"]},
)
placeholder = '\n'.join(
[f'Image {i+1}: <image>' for i in range(len(image_urls))]) + '\n'
prompt = ("<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
f"<|im_start|>user\n{placeholder}"
f"{question}<|im_end|>\n"
"<|im_start|>assistant\n")
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
)
def load_pixtral_hf(question: str, image_urls: list[str]) -> ModelRequestData:
model_name = "mistral-community/pixtral-12b"
# Adjust this as necessary to fit in GPU
engine_args = EngineArgs(
model=model_name,
max_model_len=8192,
max_num_seqs=2,
tensor_parallel_size=2,
limit_mm_per_prompt={"image": len(image_urls)},
)
placeholders = "[IMG]" * len(image_urls)
prompt = f"<s>[INST]{question}\n{placeholders}[/INST]"
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
)
def load_phi3v(question: str, image_urls: list[str]) -> ModelRequestData:
# num_crops is an override kwarg to the multimodal image processor;
# For some models, e.g., Phi-3.5-vision-instruct, it is recommended
# to use 16 for single frame scenarios, and 4 for multi-frame.
#
# Generally speaking, a larger value for num_crops results in more
# tokens per image instance, because it may scale the image more in
# the image preprocessing. Some references in the model docs and the
# formula for image tokens after the preprocessing
# transform can be found below.
#
# https://huggingface.co/microsoft/Phi-3.5-vision-instruct#loading-the-model-locally
# https://huggingface.co/microsoft/Phi-3.5-vision-instruct/blob/main/processing_phi3_v.py#L194
engine_args = EngineArgs(
model="microsoft/Phi-3.5-vision-instruct",
trust_remote_code=True,
max_model_len=4096,
max_num_seqs=2,
limit_mm_per_prompt={"image": len(image_urls)},
mm_processor_kwargs={"num_crops": 4},
)
placeholders = "\n".join(f"<|image_{i}|>"
for i, _ in enumerate(image_urls, start=1))
prompt = f"<|user|>\n{placeholders}\n{question}<|end|>\n<|assistant|>\n"
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
)
def load_phi4mm(question: str, image_urls: list[str]) -> ModelRequestData:
"""
Phi-4-multimodal-instruct supports both image and audio inputs. Here, we
show how to process multi images inputs.
"""
model_path = snapshot_download("microsoft/Phi-4-multimodal-instruct")
# Since the vision-lora and speech-lora co-exist with the base model,
# we have to manually specify the path of the lora weights.
vision_lora_path = os.path.join(model_path, "vision-lora")
engine_args = EngineArgs(
model=model_path,
trust_remote_code=True,
max_model_len=4096,
max_num_seqs=2,
limit_mm_per_prompt={"image": len(image_urls)},
enable_lora=True,
max_lora_rank=320,
# Note - mm_processor_kwargs can also be passed to generate/chat calls
mm_processor_kwargs={"dynamic_hd": 4},
)
placeholders = "".join(f"<|image_{i}|>"
for i, _ in enumerate(image_urls, start=1))
prompt = f"<|user|>{placeholders}{question}<|end|><|assistant|>"
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=[fetch_image(url) for url in image_urls],
lora_requests=[LoRARequest("vision", 1, vision_lora_path)],
)
def load_qwen_vl_chat(question: str,
image_urls: list[str]) -> ModelRequestData:
model_name = "Qwen/Qwen-VL-Chat"
engine_args = EngineArgs(
model=model_name,
trust_remote_code=True,
max_model_len=1024,
max_num_seqs=2,
hf_overrides={"architectures": ["QwenVLForConditionalGeneration"]},
limit_mm_per_prompt={"image": len(image_urls)},
)
placeholders = "".join(f"Picture {i}: <img></img>\n"
for i, _ in enumerate(image_urls, start=1))
# This model does not have a chat_template attribute on its tokenizer,
# so we need to explicitly pass it. We use ChatML since it's used in the
# generation utils of the model:
# https://huggingface.co/Qwen/Qwen-VL-Chat/blob/main/qwen_generation_utils.py#L265
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
# Copied from: https://huggingface.co/docs/transformers/main/en/chat_templating
chat_template = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" # noqa: E501
messages = [{'role': 'user', 'content': f"{placeholders}\n{question}"}]
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True,
chat_template=chat_template)
stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>"]
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
stop_token_ids=stop_token_ids,
image_data=[fetch_image(url) for url in image_urls],
chat_template=chat_template,
)
def load_qwen2_vl(question: str, image_urls: list[str]) -> ModelRequestData:
try:
from qwen_vl_utils import process_vision_info
except ModuleNotFoundError:
print('WARNING: `qwen-vl-utils` not installed, input images will not '
'be automatically resized. You can enable this functionality by '
'`pip install qwen-vl-utils`.')
process_vision_info = None
model_name = "Qwen/Qwen2-VL-7B-Instruct"
# Tested on L40
engine_args = EngineArgs(
model=model_name,
max_model_len=32768 if process_vision_info is None else 4096,
max_num_seqs=5,
limit_mm_per_prompt={"image": len(image_urls)},
)
placeholders = [{"type": "image", "image": url} for url in image_urls]
messages = [{
"role": "system",
"content": "You are a helpful assistant."
}, {
"role":
"user",
"content": [
*placeholders,
{
"type": "text",
"text": question
},
],
}]
processor = AutoProcessor.from_pretrained(model_name)
prompt = processor.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
if process_vision_info is None:
image_data = [fetch_image(url) for url in image_urls]
else:
image_data, _ = process_vision_info(messages)
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=image_data,
)
def load_qwen2_5_vl(question: str, image_urls: list[str]) -> ModelRequestData:
try:
from qwen_vl_utils import process_vision_info
except ModuleNotFoundError:
print('WARNING: `qwen-vl-utils` not installed, input images will not '
'be automatically resized. You can enable this functionality by '
'`pip install qwen-vl-utils`.')
process_vision_info = None
model_name = "Qwen/Qwen2.5-VL-3B-Instruct"
engine_args = EngineArgs(
model=model_name,
max_model_len=32768 if process_vision_info is None else 4096,
max_num_seqs=5,
limit_mm_per_prompt={"image": len(image_urls)},
)
placeholders = [{"type": "image", "image": url} for url in image_urls]
messages = [{
"role": "system",
"content": "You are a helpful assistant."
}, {
"role":
"user",
"content": [
*placeholders,
{
"type": "text",
"text": question
},
],
}]
processor = AutoProcessor.from_pretrained(model_name)
prompt = processor.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
if process_vision_info is None:
image_data = [fetch_image(url) for url in image_urls]
else:
image_data, _ = process_vision_info(messages,
return_video_kwargs=False)
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image_data=image_data,
)
model_example_map = {
"aria": load_aria,
"aya_vision": load_aya_vision,
"deepseek_vl_v2": load_deepseek_vl2,
"gemma3": load_gemma3,
"h2ovl_chat": load_h2ovl,
"idefics3": load_idefics3,
"internvl_chat": load_internvl,
"kimi_vl": load_kimi_vl,
"llama4": load_llama4,
"mistral3": load_mistral3,
"mllama": load_mllama,
"NVLM_D": load_nvlm_d,
"ovis2": load_ovis2,
"phi3_v": load_phi3v,
"phi4_mm": load_phi4mm,
"pixtral_hf": load_pixtral_hf,
"qwen_vl_chat": load_qwen_vl_chat,
"qwen2_vl": load_qwen2_vl,
"qwen2_5_vl": load_qwen2_5_vl,
"smolvlm": load_smolvlm,
}
def run_generate(model, question: str, image_urls: list[str],
seed: Optional[int]):
req_data = model_example_map[model](question, image_urls)
engine_args = asdict(req_data.engine_args) | {"seed": args.seed}
llm = LLM(**engine_args)
sampling_params = SamplingParams(temperature=0.0,
max_tokens=256,
stop_token_ids=req_data.stop_token_ids)
outputs = llm.generate(
{
"prompt": req_data.prompt,
"multi_modal_data": {
"image": req_data.image_data
},
},
sampling_params=sampling_params,
lora_request=req_data.lora_requests,
)
print("-" * 50)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
print("-" * 50)
def run_chat(model: str, question: str, image_urls: list[str],
seed: Optional[int]):
req_data = model_example_map[model](question, image_urls)
# Disable other modalities to save memory
default_limits = {"image": 0, "video": 0, "audio": 0}
req_data.engine_args.limit_mm_per_prompt = default_limits | dict(
req_data.engine_args.limit_mm_per_prompt or {})
engine_args = asdict(req_data.engine_args) | {"seed": seed}
llm = LLM(**engine_args)
sampling_params = SamplingParams(temperature=0.0,
max_tokens=256,
stop_token_ids=req_data.stop_token_ids)
outputs = llm.chat(
[{
"role":
"user",
"content": [
{
"type": "text",
"text": question,
},
*({
"type": "image_url",
"image_url": {
"url": image_url
},
} for image_url in image_urls),
],
}],
sampling_params=sampling_params,
chat_template=req_data.chat_template,
lora_request=req_data.lora_requests,
)
print("-" * 50)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
print("-" * 50)
def parse_args():
parser = FlexibleArgumentParser(
description='Demo on using vLLM for offline inference with '
'vision language models that support multi-image input for text '
'generation')
parser.add_argument('--model-type',
'-m',
type=str,
default="phi3_v",
choices=model_example_map.keys(),
help='Huggingface "model_type".')
parser.add_argument("--method",
type=str,
default="generate",
choices=["generate", "chat"],
help="The method to run in `vllm.LLM`.")
parser.add_argument("--seed",
type=int,
default=None,
help="Set the seed when initializing `vllm.LLM`.")
parser.add_argument(
"--num-images",
"-n",
type=int,
choices=list(range(1,
len(IMAGE_URLS) + 1)), # the max number of images
default=2,
help="Number of images to use for the demo.")
return parser.parse_args()
def main(args: Namespace):
model = args.model_type
method = args.method
seed = args.seed
image_urls = IMAGE_URLS[:args.num_images]
if method == "generate":
run_generate(model, QUESTION, image_urls, seed)
elif method == "chat":
run_chat(model, QUESTION, image_urls, seed)
else:
raise ValueError(f"Invalid method: {method}")
if __name__ == "__main__":
args = parse_args()
main(args)