Skip to content

Commit aa0ca5e

Browse files
authored
[core][rlhf] add colocate example for RLHF (#12984)
Signed-off-by: youkaichao <[email protected]>
1 parent 59fff4a commit aa0ca5e

File tree

2 files changed

+78
-10
lines changed

2 files changed

+78
-10
lines changed

.buildkite/test-pipeline.yaml

+2-2
Original file line numberDiff line numberDiff line change
@@ -128,7 +128,7 @@ steps:
128128
- tests/spec_decode/e2e/test_integration_dist_tp4
129129
- tests/compile
130130
- examples/offline_inference/rlhf.py
131-
- examples/offline_inference/ray_placement.py
131+
- examples/offline_inference/rlhf_colocate.py
132132
commands:
133133
- pytest -v -s distributed/test_utils.py
134134
- pytest -v -s compile/test_basic_correctness.py
@@ -137,7 +137,7 @@ steps:
137137
# TODO: create a dedicated test section for multi-GPU example tests
138138
# when we have multiple distributed example tests
139139
- python3 ../examples/offline_inference/rlhf.py
140-
- RAY_DEDUP_LOGS=0 python3 ../examples/offline_inference/ray_placement.py
140+
- RAY_DEDUP_LOGS=0 python3 ../examples/offline_inference/rlhf_colocate.py
141141

142142
- label: Metrics, Tracing Test # 10min
143143
num_gpus: 2

examples/offline_inference/ray_placement.py renamed to examples/offline_inference/rlhf_colocate.py

+76-8
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,18 @@
11
# SPDX-License-Identifier: Apache-2.0
22
"""
3-
a simple demonstration to show how to control
4-
the placement of the vLLM workers with Ray.
5-
The key is to set VLLM_RAY_PER_WORKER_GPUS and
6-
VLLM_RAY_BUNDLE_INDICES properly.
3+
a simple demonstration to show how to co-locate
4+
vLLM worker with training actors on the same GPUs,
5+
for RLHF-like applications.
6+
The key points:
7+
- Control the placement of the vLLM workers with Ray, by setting
8+
VLLM_RAY_PER_WORKER_GPUS and VLLM_RAY_BUNDLE_INDICES properly.
9+
- Use cuda-ipc to pass tensors, since NCCL does not work when we have
10+
multiple processes on the same GPU.
711
"""
812
import os
913

1014
import ray
15+
import torch
1116
from ray.util.placement_group import placement_group
1217
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
1318

@@ -19,7 +24,33 @@ class MyWorker(Worker):
1924

2025
def report_device_id(self) -> str:
2126
from vllm.platforms import current_platform
22-
return current_platform.get_device_uuid(self.device.index)
27+
self.device_uuid = current_platform.get_device_uuid(self.device.index)
28+
return self.device_uuid
29+
30+
def update_weights_from_ipc_handles(self, ipc_handles):
31+
handles = ipc_handles[self.device_uuid]
32+
device_id = self.device.index
33+
weights = []
34+
for name, handle in handles.items():
35+
func, args = handle
36+
list_args = list(args)
37+
# the key is to change device id to the current device id
38+
# in case two processes have different CUDA_VISIBLE_DEVICES
39+
list_args[6] = device_id
40+
tensor = func(*list_args)
41+
weights.append((name, tensor))
42+
self.model_runner.model.load_weights(weights=weights)
43+
torch.cuda.synchronize()
44+
45+
def check_weights_changed(self):
46+
"""
47+
Check if the weights are updated to 0.
48+
"""
49+
weights_updated = True
50+
for name, p in self.model_runner.model.named_parameters():
51+
weights_updated = weights_updated and torch.allclose(
52+
p, torch.zeros_like(p))
53+
return weights_updated
2354

2455

2556
class MyLLM(LLM):
@@ -40,12 +71,32 @@ def __init__(self, *args, bundle_indices: list, **kwargs):
4071

4172
class RayTrainingActor:
4273

43-
def report_device_id(self) -> str:
74+
def __init__(self):
75+
# ray will set CUDA_VISIBLE_DEVICES to the assigned GPUs
76+
from transformers import AutoModelForCausalLM
77+
self.model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
78+
self.model.to("cuda:0")
79+
for name, p in self.model.named_parameters():
80+
p.data.zero_()
81+
torch.cuda.synchronize()
4482
# the argument for get_device_uuid is the index
4583
# of the GPU in the visible devices.
46-
# ray will set CUDA_VISIBLE_DEVICES to the assigned GPUs
4784
from vllm.platforms import current_platform
48-
return current_platform.get_device_uuid(0)
85+
self.device_uuid = current_platform.get_device_uuid(0)
86+
87+
def report_device_id(self) -> str:
88+
return self.device_uuid
89+
90+
def get_weight_ipc_handles(self):
91+
from torch.multiprocessing.reductions import reduce_tensor
92+
data = {}
93+
for name, p in self.model.named_parameters():
94+
# the training actor might only have a subset of the weights
95+
# and need to all-gather the weights from all the actors.
96+
# for demonstration, here we assume all training actors have
97+
# the full weights.
98+
data[name] = reduce_tensor(p.detach())
99+
return {self.device_uuid: data}
49100

50101

51102
# ray manages 4 GPUs
@@ -78,6 +129,8 @@ def report_device_id(self) -> str:
78129
),
79130
)(RayTrainingActor).remote()
80131
training_actors.append(training_actor)
132+
133+
for bundle_index, training_actor in enumerate(training_actors):
81134
device_id = ray.get(training_actor.report_device_id.remote())
82135
print(f"training actor {bundle_index} is on {device_id}")
83136
training_actor_device_ids.append(device_id)
@@ -119,3 +172,18 @@ def report_device_id(self) -> str:
119172
# the last two training actors should be
120173
# on the same GPUs as the second inference engine
121174
assert training_actor_device_ids[2:] == inference_engine_device_ids[1]
175+
176+
print("gather all the IPC handles from the training actors")
177+
ipc_handles = {}
178+
for actor in training_actors:
179+
ipc_handles.update(ray.get(actor.get_weight_ipc_handles.remote()))
180+
181+
print("update the weights of the inference engines")
182+
for llm in inference_engines:
183+
ray.get(
184+
llm.collective_rpc.remote("update_weights_from_ipc_handles",
185+
args=(ipc_handles, )))
186+
print("check if the weights are updated")
187+
for llm in inference_engines:
188+
assert ray.get(
189+
llm.collective_rpc.remote("check_weights_changed", args=tuple()))

0 commit comments

Comments
 (0)