|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | + |
| 3 | +import unittest |
| 4 | +from typing import Tuple |
| 5 | + |
| 6 | +import pytest |
| 7 | +import torch |
| 8 | + |
| 9 | +from tests.utils import multi_gpu_test |
| 10 | +from vllm.distributed.parallel_state import (init_distributed_environment, |
| 11 | + initialize_model_parallel) |
| 12 | +from vllm.model_executor.layers.mamba.mamba_mixer2 import Mixer2RMSNormGated |
| 13 | +from vllm.platforms import current_platform |
| 14 | +from vllm.utils import update_environment_variables |
| 15 | + |
| 16 | + |
| 17 | +@multi_gpu_test(num_gpus=2) |
| 18 | +@pytest.mark.parametrize("batch_size", [8]) |
| 19 | +@pytest.mark.parametrize("seq_len", [128]) |
| 20 | +@pytest.mark.parametrize( |
| 21 | + "hidden_size_n_groups", |
| 22 | + [ |
| 23 | + (64, 1), |
| 24 | + (64, 2), |
| 25 | + (64, 4), # hidden_size be divisible by num_gpus |
| 26 | + (100, 5), # and n_groups must divide hidden_size |
| 27 | + ]) |
| 28 | +@pytest.mark.parametrize("dtype", [torch.float16]) |
| 29 | +def test_mixer2_gated_norm_multi_gpu( |
| 30 | + batch_size: int, |
| 31 | + seq_len: int, |
| 32 | + hidden_size_n_groups: Tuple[int, int], |
| 33 | + dtype: torch.dtype, |
| 34 | + device: str = 'cuda', |
| 35 | +): |
| 36 | + hidden_size, n_groups = hidden_size_n_groups |
| 37 | + num_processes = 2 |
| 38 | + |
| 39 | + def run_torch_spawn(fn, nprocs): |
| 40 | + # need to use torch.mp.spawn otherwise will have problems with |
| 41 | + # torch.distributed and cuda |
| 42 | + torch.multiprocessing.spawn(fn, |
| 43 | + args=( |
| 44 | + num_processes, |
| 45 | + batch_size, |
| 46 | + seq_len, |
| 47 | + hidden_size, |
| 48 | + n_groups, |
| 49 | + dtype, |
| 50 | + device, |
| 51 | + ), |
| 52 | + nprocs=nprocs) |
| 53 | + |
| 54 | + run_torch_spawn(mixer2_gated_norm_tensor_parallel, 2) |
| 55 | + |
| 56 | + |
| 57 | +def mixer2_gated_norm_tensor_parallel( |
| 58 | + local_rank: int, |
| 59 | + world_size: int, |
| 60 | + batch_size: int, |
| 61 | + seq_len: int, |
| 62 | + hidden_size: int, |
| 63 | + n_groups: int, |
| 64 | + dtype: torch.dtype, |
| 65 | + device: str, |
| 66 | +): |
| 67 | + current_platform.seed_everything(0) |
| 68 | + |
| 69 | + device = torch.device(f"cuda:{local_rank}") |
| 70 | + torch.cuda.set_device(device) |
| 71 | + torch.set_default_device(device) |
| 72 | + torch.set_default_dtype(dtype) |
| 73 | + |
| 74 | + update_environment_variables({ |
| 75 | + 'RANK': str(local_rank), |
| 76 | + 'LOCAL_RANK': str(local_rank), |
| 77 | + 'WORLD_SIZE': str(world_size), |
| 78 | + 'MASTER_ADDR': 'localhost', |
| 79 | + 'MASTER_PORT': '12345', |
| 80 | + }) |
| 81 | + |
| 82 | + # initialize distributed |
| 83 | + init_distributed_environment() |
| 84 | + initialize_model_parallel(tensor_model_parallel_size=world_size) |
| 85 | + |
| 86 | + # create random weights an inputs |
| 87 | + weight = torch.rand((hidden_size, ), dtype=dtype, device=device) |
| 88 | + hidden_states = torch.randn(batch_size, seq_len, hidden_size) |
| 89 | + gate_states = torch.randn(batch_size, seq_len, hidden_size) |
| 90 | + |
| 91 | + # create gated-norm with TP |
| 92 | + mixer = Mixer2RMSNormGated( |
| 93 | + full_hidden_size=hidden_size, |
| 94 | + full_n_groups=n_groups, |
| 95 | + ) |
| 96 | + mixer.weight.weight_loader(mixer.weight, weight) # load |
| 97 | + |
| 98 | + # create gated-norm without TP to compute reference |
| 99 | + # - utilize mock patching to disable TP when |
| 100 | + with (unittest.mock.patch( |
| 101 | + "vllm.model_executor.layers.mamba.mamba_mixer2." |
| 102 | + "get_tensor_model_parallel_world_size", |
| 103 | + return_value=1), |
| 104 | + unittest.mock.patch( |
| 105 | + "vllm.model_executor.layers.mamba.mamba_mixer2." |
| 106 | + "get_tensor_model_parallel_rank", |
| 107 | + return_value=0)): |
| 108 | + mixer_single_gpu = Mixer2RMSNormGated( |
| 109 | + full_hidden_size=hidden_size, |
| 110 | + full_n_groups=n_groups, |
| 111 | + ) |
| 112 | + # assign weight to single-gpu mixer |
| 113 | + mixer_single_gpu.weight.data = weight |
| 114 | + |
| 115 | + # generate and compare |
| 116 | + N = hidden_size // world_size |
| 117 | + output = mixer( |
| 118 | + hidden_states[..., local_rank * N:(local_rank + 1) * N], |
| 119 | + gate_states[..., local_rank * N:(local_rank + 1) * N], |
| 120 | + ) |
| 121 | + ref_output = mixer_single_gpu(hidden_states, gate_states) |
| 122 | + torch.allclose(output, |
| 123 | + ref_output[..., local_rank * N:(local_rank + 1) * N], |
| 124 | + atol=1e-3, |
| 125 | + rtol=1e-3) |
0 commit comments