|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | +""" |
| 3 | +Test: |
| 4 | +
|
| 5 | +* Tests for MultiHeadAttention layer |
| 6 | +""" |
| 7 | + |
| 8 | +import pytest |
| 9 | +import torch |
| 10 | +import torch_xla |
| 11 | +import torch_xla.core |
| 12 | +import torch_xla.core.xla_model |
| 13 | + |
| 14 | +from vllm import envs |
| 15 | +from vllm.attention.layer import MultiHeadAttention |
| 16 | +from vllm.attention.selector import _cached_get_attn_backend |
| 17 | +from vllm.platforms import current_platform |
| 18 | + |
| 19 | +if not envs.VLLM_USE_V1: |
| 20 | + pytest.skip( |
| 21 | + "Skipping V1 tests. Rerun with `VLLM_USE_V1=1` to test.", |
| 22 | + allow_module_level=True, |
| 23 | + ) |
| 24 | + |
| 25 | + |
| 26 | +@pytest.fixture(autouse=True) |
| 27 | +def clear_cache(): |
| 28 | + """Clear lru cache to ensure each test case runs without caching. |
| 29 | + """ |
| 30 | + _cached_get_attn_backend.cache_clear() |
| 31 | + |
| 32 | + |
| 33 | +def ref_attention( |
| 34 | + query: torch.Tensor, |
| 35 | + key: torch.Tensor, |
| 36 | + value: torch.Tensor, |
| 37 | + scale: float, |
| 38 | +) -> torch.Tensor: |
| 39 | + """ |
| 40 | + Native implementation of scaled dot product attention without mask: |
| 41 | + - query, key, value: [batch_size, seq_len, num_heads, head_size] |
| 42 | + - attn_mask: [batch_size, seq_len, seq_len] |
| 43 | + """ |
| 44 | + query, key, value = (x.transpose(1, 2) for x in (query, key, value)) |
| 45 | + attn_weights = scale * torch.matmul(query, key.transpose(2, 3)) |
| 46 | + attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype) |
| 47 | + out = torch.matmul(attn_weights, value).transpose(1, 2) |
| 48 | + return out |
| 49 | + |
| 50 | + |
| 51 | +BATCH_SIZES = [1, 16] |
| 52 | +SEQ_LENS = [1] |
| 53 | +NUM_HEADS = [1, 16] |
| 54 | +NUM_KV_HEADS = [1] |
| 55 | +HEAD_SIZES = [64, 80] |
| 56 | + |
| 57 | + |
| 58 | +@pytest.mark.skipif(not current_platform.is_tpu(), |
| 59 | + reason="This test needs a TPU") |
| 60 | +@pytest.mark.parametrize("batch_size", BATCH_SIZES) |
| 61 | +@pytest.mark.parametrize("seq_len", SEQ_LENS) |
| 62 | +@pytest.mark.parametrize("num_heads", NUM_HEADS) |
| 63 | +@pytest.mark.parametrize("num_kv_heads", NUM_KV_HEADS) |
| 64 | +@pytest.mark.parametrize("head_size", HEAD_SIZES) |
| 65 | +@pytest.mark.parametrize("device", [torch_xla.core.xla_model.xla_device()]) |
| 66 | +def test_mha_attn_forward( |
| 67 | + batch_size: int, |
| 68 | + seq_len: int, |
| 69 | + num_heads: int, |
| 70 | + num_kv_heads: int, |
| 71 | + head_size: int, |
| 72 | + device: str, |
| 73 | +): |
| 74 | + current_platform.seed_everything(0) |
| 75 | + # These are expected to be f32 |
| 76 | + q = torch.randn(batch_size, seq_len, num_heads * head_size, device=device) |
| 77 | + k = torch.randn(batch_size, |
| 78 | + seq_len, |
| 79 | + num_kv_heads * head_size, |
| 80 | + device=device) |
| 81 | + v = torch.randn(batch_size, |
| 82 | + seq_len, |
| 83 | + num_kv_heads * head_size, |
| 84 | + device=device) |
| 85 | + scale = 1.0 / head_size**0.5 |
| 86 | + attn = MultiHeadAttention(num_heads, |
| 87 | + head_size, |
| 88 | + scale=scale, |
| 89 | + num_kv_heads=num_kv_heads) |
| 90 | + output = attn(q, k, v) |
| 91 | + |
| 92 | + assert num_heads % num_kv_heads == 0 |
| 93 | + num_queries_per_kv = num_heads // num_kv_heads |
| 94 | + |
| 95 | + q = q.reshape(batch_size, seq_len, num_heads, head_size) |
| 96 | + k = k.reshape(batch_size, seq_len, num_kv_heads, head_size) |
| 97 | + v = v.reshape(batch_size, seq_len, num_kv_heads, head_size) |
| 98 | + if num_queries_per_kv > 1: |
| 99 | + k = torch.repeat_interleave(k, num_queries_per_kv, dim=2) |
| 100 | + v = torch.repeat_interleave(v, num_queries_per_kv, dim=2) |
| 101 | + |
| 102 | + ref_output = ref_attention( |
| 103 | + q, |
| 104 | + k, |
| 105 | + v, |
| 106 | + scale=scale, |
| 107 | + ).reshape(batch_size, seq_len, num_heads * head_size) |
| 108 | + # torch_xla flash_attn kernel is less accurate but much faster |
| 109 | + torch.testing.assert_close(output, ref_output, atol=1e-2, rtol=1e-3) |
0 commit comments