Skip to content

[Bug]: Benchmark script - TypeError: argument 'text': 'list' object cannot be converted to 'PyString' #12144

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
1 task done
vijaypal89 opened this issue Jan 17, 2025 · 5 comments · Fixed by #12149
Closed
1 task done
Labels
bug Something isn't working

Comments

@vijaypal89
Copy link

Your current environment

The output of `python collect_env.py`
RuntimeWarning: Failed to read commit hash:
No module named 'vllm._version'
  from vllm.version import __version__ as VLLM_VERSION
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35

Python version: 3.11.10 (main, Oct  3 2024, 07:29:13) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        46 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               16
On-line CPU(s) list:                  0-15
Vendor ID:                            GenuineIntel
Model name:                           Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz
CPU family:                           15
Model:                                6
Thread(s) per core:                   1
Core(s) per socket:                   1
Socket(s):                            16
Stepping:                             1
BogoMIPS:                             5200.00
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss syscall nx pdpe1gb rdtscp lm constant_tsc nopl xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat avx512vbmi umip avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm md_clear arch_capabilities
Hypervisor vendor:                    KVM
Virtualization type:                  full
L1d cache:                            512 KiB (16 instances)
L1i cache:                            512 KiB (16 instances)
L2 cache:                             64 MiB (16 instances)
L3 cache:                             256 MiB (16 instances)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-15
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Unknown: No mitigations
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] torch==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.45.2
[pip3] triton==3.1.0
[pip3] zmq==0.0.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-ml-py              12.560.30                pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] pyzmq                     26.2.0                   pypi_0    pypi
[conda] torch                     2.5.1                    pypi_0    pypi
[conda] torchvision               0.20.1                   pypi_0    pypi
[conda] transformers              4.45.2                   pypi_0    pypi
[conda] triton                    3.1.0                    pypi_0    pypi
[conda] zmq                       0.0.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: N/A (dev)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
Could not collect

LD_LIBRARY_PATH=/home/vijay/miniconda3/envs/nai/lib/python3.11/site-packages/cv2/../../lib64:

Model Input Dumps

vllm version 0.6.6
Running below command -

python3 benchmarks/benchmark_serving.py --backend openai-chat --model msnemo24072h100gv  --base-url <serving url> --dataset-name sonnet --dataset-path benchmarks/sonnet.txt --request-rate 16 --num-prompts 256 --endpoint /api/v1/chat/completions --sonnet-input-len=3864 --sonnet-output-len=200 --sonnet-prefix-len=3764 --tokenizer mistralai/Mistral-Nemo-Instruct-2407 --tokenizer-mode mistral

Getting below error

Traceback (most recent call last):
  File "/home/vijay/vllm/benchmarks/benchmark_serving.py", line 1226, in <module>
    main(args)
  File "/home/vijay/vllm/benchmarks/benchmark_serving.py", line 821, in main
    input_requests = sample_sonnet_requests(
                     ^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/vijay/vllm/benchmarks/benchmark_serving.py", line 149, in sample_sonnet_requests
    poem_token_ids = tokenizer(poem_lines).input_ids
                     ^^^^^^^^^^^^^^^^^^^^^
  File "/home/vijay/miniconda3/envs/nai/lib/python3.11/site-packages/vllm/transformers_utils/tokenizers/mistral.py", line 232, in __call__
    input_ids = self.encode(prompt)
                ^^^^^^^^^^^^^^^^^^^
  File "/home/vijay/miniconda3/envs/nai/lib/python3.11/site-packages/vllm/transformers_utils/tokenizers/mistral.py", line 252, in encode
    return self.tokenizer.encode(prompt, bos=True, eos=False)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/vijay/miniconda3/envs/nai/lib/python3.11/site-packages/mistral_common/tokens/tokenizers/tekken.py", line 220, in encode
    tokens: List[int] = self._model.encode(s)
                        ^^^^^^^^^^^^^^^^^^^^^
  File "/home/vijay/miniconda3/envs/nai/lib/python3.11/site-packages/tiktoken/core.py", line 124, in encode
    return self._core_bpe.encode(text, allowed_special)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: argument 'text': 'list' object cannot be converted to 'PyString'

🐛 Describe the bug

vllm version 0.6.6
Running below command -

python3 benchmarks/benchmark_serving.py --backend openai-chat --model msnemo24072h100gv  --base-url <serving url> --dataset-name sonnet --dataset-path benchmarks/sonnet.txt --request-rate 16 --num-prompts 256 --endpoint /api/v1/chat/completions --sonnet-input-len=3864 --sonnet-output-len=200 --sonnet-prefix-len=3764 --tokenizer mistralai/Mistral-Nemo-Instruct-2407 --tokenizer-mode mistral

Getting below error

Traceback (most recent call last):
  File "/home/vijay/vllm/benchmarks/benchmark_serving.py", line 1226, in <module>
    main(args)
  File "/home/vijay/vllm/benchmarks/benchmark_serving.py", line 821, in main
    input_requests = sample_sonnet_requests(
                     ^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/vijay/vllm/benchmarks/benchmark_serving.py", line 149, in sample_sonnet_requests
    poem_token_ids = tokenizer(poem_lines).input_ids
                     ^^^^^^^^^^^^^^^^^^^^^
  File "/home/vijay/miniconda3/envs/nai/lib/python3.11/site-packages/vllm/transformers_utils/tokenizers/mistral.py", line 232, in __call__
    input_ids = self.encode(prompt)
                ^^^^^^^^^^^^^^^^^^^
  File "/home/vijay/miniconda3/envs/nai/lib/python3.11/site-packages/vllm/transformers_utils/tokenizers/mistral.py", line 252, in encode
    return self.tokenizer.encode(prompt, bos=True, eos=False)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/vijay/miniconda3/envs/nai/lib/python3.11/site-packages/mistral_common/tokens/tokenizers/tekken.py", line 220, in encode
    tokens: List[int] = self._model.encode(s)
                        ^^^^^^^^^^^^^^^^^^^^^
  File "/home/vijay/miniconda3/envs/nai/lib/python3.11/site-packages/tiktoken/core.py", line 124, in encode
    return self._core_bpe.encode(text, allowed_special)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: argument 'text': 'list' object cannot be converted to 'PyString'

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@vijaypal89 vijaypal89 added the bug Something isn't working label Jan 17, 2025
@jikunshang
Copy link
Contributor

what's mistral_common and tiktoken version in your env? I tried mistral_common 1.5.1 and tiktoken 0.7.0 which cannot reproduce.

@vijaypal89
Copy link
Author

@jikunshang I have exact same version mistral_common 1.5.1 and tiktoken 0.7.0

@vijaypal89
Copy link
Author

@jikunshang Another thing to mention is that, this is happening only for few mistral models only.

@jikunshang
Copy link
Contributor

@vijaypal89 thanks for your input, fixed in this PR #12149 please take a try.

@vijaypal89
Copy link
Author

Thanks @jikunshang this fixes vllm issue TypeError: argument 'text': 'list' object cannot be converted to 'PyString'

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants