This repository was archived by the owner on Nov 29, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathutilities.py
executable file
·232 lines (194 loc) · 7.95 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import json
import logging
import os
import pickle
from itertools import zip_longest
import click
import numpy as np
from tensorflow.saved_model import signature_def_utils, builder, tag_constants, signature_constants
from keras import backend as K
from keras.models import Model, load_model
from keras.layers import Input
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.inception_resnet_v2 import preprocess_input
from sklearn.neighbors import BallTree
from PIL import Image
logger = logging.getLogger('keras_training')
formatter = logging.Formatter('%(asctime)s [%(levelname)s] %(name)s - %(message)s')
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger.setLevel(logging.INFO)
logger.addHandler(ch)
IMAGE_DIMENSIONS = (299, 299, 3)
SEARCH_INDEX_FILENAME = 'search_index.pkl'
def get_default_inception_model():
input = Input(shape=IMAGE_DIMENSIONS)
return InceptionResNetV2(weights='imagenet', input_tensor=input)
def get_default_inception_model_signature():
model = get_default_inception_model()
signature = signature_def_utils.predict_signature_def(
inputs={'input': model.input},
outputs={
'embedding': model.layers[-1].input,
'softmax': model.layers[-1].output
}
)
return signature
def export_savedmodel_for_tensorflow_serving(basepath, version, signature_name, signature):
"""Exports a model signature to a SavedModel format
Args:
basepath (str): Path to store SavedModel files
version (int): Version of the model being exported
signature_name (str): Name of signature to request in Tensorflow Serving
signature (signature_def): Signature to make available to Tensorflow Serving
"""
save_path = os.path.join(basepath, str(version))
model_builder = builder.SavedModelBuilder(save_path)
model_builder.add_meta_graph_and_variables(
sess=K.get_session(),
tags=[tag_constants.SERVING],
signature_def_map={
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature,
signature_name: signature
}
)
model_builder.save()
def convert_image_to_square_rgb(image, image_dims=IMAGE_DIMENSIONS[:2]):
"""Takes an image, converts it to RGB, pad to a square image, resizes,
and converts to numpy array.
Args:
image (PIL.Image): Image to process
Returns:
PIL.Image
"""
if image.mode != 'RGB':
image = image.convert('RGB')
width, height = image.size
if width != height:
max_dimension = max(image.size)
square_image = Image.new('RGB', (max_dimension, max_dimension), 'white')
paste_location = ((max_dimension - width) // 2, (max_dimension - height) // 2)
square_image.paste(image, paste_location)
image = square_image
if image.size != image_dims:
image = image.resize(image_dims, Image.ANTIALIAS)
return np.array(image)
def preprocess_image_inception_keras(image_matrix):
X = np.array(image_matrix, dtype=np.float32)
return preprocess_input(X)
def contrastive_loss(y_true, y_pred):
"""Contrastive loss from Hadsell-et-al.'06
http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
"""
margin = 1
return K.mean(y_true * K.square(y_pred) +
(1 - y_true) * K.square(K.maximum(margin - y_pred, 0)))
def grouper(n, iterable, fillvalue=None):
args = [iter(iterable)] * n
return zip_longest(fillvalue=fillvalue, *args)
def image_batches(rows, batch_size, image_dir=None):
"""A generator that yields a batch of images from a flat list of image
data.
Args:
rows (List): List of (metadata, filename) pairs
batch_size (int): The max size of each batch of images
image_dir (Optional[str]): The root dir for where images are stored,
use if filename in rows is relative
Returns:
tuple(dict, ndarray)
"""
for batch in grouper(batch_size, rows, (None, None)):
images = []
payloads = []
for metadata, filename in batch:
if filename:
if image_dir:
filename = os.path.join(image_dir, filename)
image = Image.open(filename)
x = convert_image_to_square_rgb(image)
images.append(x)
payloads.append(metadata)
else:
break
yield (payloads, preprocess_image_inception_keras(images))
@click.command()
@click.option('--export', type=click.Choice(['savedmodel', 'balltree']))
@click.option('--keras-model')
@click.option('--labeled-data')
@click.option('--image-dir')
@click.option('--batch-size', default=1024)
def cli(export, keras_model, labeled_data, image_dir, batch_size):
if export == 'savedmodel' and keras_model:
logger.info('Starting export of {} to SavedModel'.format(keras_model))
model = load_model(
keras_model,
custom_objects={'contrastive_loss': contrastive_loss}
)
embedder = model.get_layer('embedding_model')
image_tensor = embedder.inputs[0]
embedding_tensor = embedder.outputs[0]
signature = signature_def_utils.predict_signature_def(
inputs={'input': image_tensor},
outputs={
'embedding': embedding_tensor,
}
)
export_savedmodel_for_tensorflow_serving('/app/savedmodels/inception_resnet_v2', 2, 'prediction', signature)
elif export == 'savedmodel' and not keras_model:
logger.info('Starting export of default SavedModel')
signature = get_default_inception_model_signature()
export_savedmodel_for_tensorflow_serving('/app/savedmodels/inception_resnet_v2', 1, 'prediction', signature)
elif export == 'balltree':
if keras_model:
logger.info('Starting BallTree creation for {}'.format(keras_model))
model = load_model(
keras_model,
custom_objects={'contrastive_loss': contrastive_loss}
)
model = model.get_layer('embedding_model')
else:
logger.info('Starting BallTree creation for default model')
inception = get_default_inception_model()
model = Model(
inputs=[inception.input],
outputs=[inception.layers[-1].input, inception.layers[-1].output],
name='embedding_model'
)
with open(labeled_data) as f:
item_image_data = json.loads(f.read())
rows = []
for item_id, data in item_image_data.items():
for image in data['images']:
# Edit here if you want more data in the payload for each image
payload = {
'item_id': item_id,
'filename': image['filename']
}
row = (payload, image['filename'])
rows.append(row)
logger.info('Embedding {} images'.format(len(rows)))
payloads = []
embeddings = []
num_batches = len(rows) // batch_size
for i, (payload_batch, images) in enumerate(image_batches(rows, batch_size, image_dir)):
print(' {}/{} batches done'.format(i, num_batches), end='\r')
outputs = model.predict(images)
if type(outputs) == list:
embedding, softmax = outputs
elif type(outputs) == np.ndarray:
embedding = outputs
payloads.extend(payload_batch)
embeddings.append(embedding)
print()
logger.info('Making ball tree')
X = np.vstack(embeddings)
ball_tree = BallTree(X, leaf_size=40)
index_data = {
'metadata': payloads,
'index': ball_tree
}
logger.info('Pickling to {}'.format(SEARCH_INDEX_FILENAME))
with open(SEARCH_INDEX_FILENAME, 'wb') as f:
pickle.dump(index_data, f, pickle.HIGHEST_PROTOCOL)
if __name__ == '__main__':
cli()