-
Notifications
You must be signed in to change notification settings - Fork 126
/
Copy pathserializers.py
424 lines (356 loc) · 13.5 KB
/
serializers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
from rest_framework import serializers
from pandas import DataFrame
from pandas.api.types import is_numeric_dtype
from django.core.exceptions import ImproperlyConfigured
from django.utils.functional import cached_property
import datetime
from collections import OrderedDict
from . import settings
def get_label(field, name):
if field.label == "ID":
return "id"
elif field.label:
return field.label
else:
return name
class PandasSerializer(serializers.ListSerializer):
"""
Transforms dataset into a dataframe and applies an index
"""
read_only = True
apply_field_labels = settings.APPLY_FIELD_LABELS
index_none_value = settings.INDEX_NONE_VALUE
wq_chart_type = None
def get_index(self, dataframe):
return self.get_index_fields()
@cached_property
def field_labels(self):
return {
name: get_label(field, name)
for name, field in self.child.get_fields().items()
}
def get_dataframe(self, data):
dataframe = DataFrame(data)
if self.apply_field_labels:
dataframe.rename(columns=self.field_labels, inplace=True)
index = self.get_index(dataframe)
if index:
if self.index_none_value is not None:
for key in index:
try:
dataframe[key].fillna(
self.index_none_value, inplace=True
)
except ValueError:
pass
dataframe.set_index(index, inplace=True)
else:
# Name auto-index column to ensure valid CSV output
dataframe.index.name = "row"
return dataframe
def transform_dataframe(self, dataframe):
view = self.context.get("view", None)
if view and hasattr(view, "transform_dataframe"):
return self.context["view"].transform_dataframe(dataframe)
return dataframe
@property
def data(self):
data = super(serializers.ListSerializer, self).data
if isinstance(data, DataFrame) or data:
dataframe = self.get_dataframe(data)
return self.transform_dataframe(dataframe)
else:
return DataFrame([])
def to_representation(self, data):
if isinstance(data, DataFrame):
return data
return super().to_representation(data)
@property
def model_serializer(self):
serializer = type(self.child)
if serializer.__name__ == "SerializerWithListSerializer":
return serializer.__bases__[0]
return serializer
@property
def model_serializer_meta(self):
return getattr(self.model_serializer, "Meta", object())
def get_index_fields(self):
"""
List of fields to use for index
"""
index_fields = self.get_meta_option("index", [], True)
if index_fields:
return index_fields
model = getattr(self.model_serializer_meta, "model", None)
if model:
pk_name = model._meta.pk.name
if pk_name in self.child.get_fields():
if self.apply_field_labels:
pk_name = self.field_labels.get(pk_name, pk_name)
return [pk_name]
return []
def get_meta_option(self, name, default=None, apply_field_labels=False):
meta_name = "pandas_" + name
value = getattr(self.model_serializer_meta, meta_name, None)
if value is None:
if default is not None:
return default
else:
raise ImproperlyConfigured(
"%s should be specified on %s.Meta"
% (meta_name, self.model_serializer.__name__)
)
elif apply_field_labels and self.apply_field_labels:
return [self.field_labels.get(field, field) for field in value]
else:
return value
class PandasUnstackedSerializer(PandasSerializer):
"""
Pivots dataframe so commonly-repeating values are across the top in a
multi-row header. Intended for use with e.g. time series data, where the
header includes metadata applicable to each time series.
(Use with wq/chart.js' timeSeries() function)
"""
index_none_value = "-"
wq_chart_type = "timeSeries"
def get_index(self, dataframe):
"""
Include header fields in initial index for later unstacking
"""
return self.get_index_fields() + self.get_header_fields()
def transform_dataframe(self, dataframe):
"""
Unstack the dataframe so header fields are across the top.
"""
dataframe.columns.name = ""
for i in range(len(self.get_header_fields())):
dataframe = dataframe.unstack()
# Remove blank rows / columns
dataframe = dataframe.dropna(axis=0, how="all").dropna(
axis=1, how="all"
)
return dataframe
def get_header_fields(self):
"""
Series metadata fields for header (first few rows)
"""
return self.get_meta_option("unstacked_header", None, True)
class PandasScatterSerializer(PandasSerializer):
"""
Pivots dataframe into a format suitable for plotting two series
against each other as x vs y on a scatter plot.
(Use with wq/chart.js' scatter() function)
"""
index_none_value = "-"
wq_chart_type = "scatter"
def get_index(self, dataframe):
"""
Include scatter & header fields in initial index for later unstacking
"""
return (
self.get_index_fields()
+ self.get_header_fields()
+ self.get_coord_fields()
)
def transform_dataframe(self, dataframe):
"""
Unstack the dataframe so header consists of a composite 'value' header
plus any other header fields.
"""
coord_fields = self.get_coord_fields()
header_fields = self.get_header_fields()
# Remove any pairs that don't have data for both x & y
for i in range(len(coord_fields)):
dataframe = dataframe.unstack()
dataframe = dataframe.dropna(axis=1, how="all")
dataframe = dataframe.dropna(axis=0, how="any")
# Unstack series header
for i in range(len(header_fields)):
dataframe = dataframe.unstack()
# Compute new column headers
columns = []
for i in range(len(header_fields) + 1):
columns.append([])
for col in dataframe.columns:
value_name = col[0]
coord_names = list(col[1 : len(coord_fields) + 1])
header_names = list(col[len(coord_fields) + 1 :])
coord_name = ""
for name in coord_names:
if name != self.index_none_value:
coord_name += name + "-"
coord_name += value_name
columns[0].append(coord_name)
for i, header_name in enumerate(header_names):
columns[1 + i].append(header_name)
dataframe.columns = columns
dataframe.columns.names = [""] + header_fields
return dataframe
def get_coord_fields(self):
"""
Fields that will be collapsed into a single header with the name of
each coordinate.
"""
return self.get_meta_option("scatter_coord", None, True)
def get_header_fields(self):
"""
Other header fields, if any
"""
return self.get_meta_option("scatter_header", [], True)
class PandasBoxplotSerializer(PandasSerializer):
"""
Compute boxplot statistics on dataframe columns, creating a new unstacked
dataframe where each row describes a boxplot.
(Use with wq/chart.js' boxplot() function)
"""
index_none_value = "-"
wq_chart_type = "boxplot"
def get_index(self, dataframe):
group_field = self.get_group_field()
date_field = self.get_date_field()
header_fields = self.get_header_fields()
extra_index_fields = self.get_extra_index_fields()
index = []
if date_field:
index.append(date_field)
index += extra_index_fields
index.append(group_field)
index += header_fields
return index
def transform_dataframe(self, dataframe):
"""
Use matplotlib to compute boxplot statistics on e.g. timeseries data.
"""
grouping = self.get_grouping(dataframe)
group_field = self.get_group_field()
header_fields = self.get_header_fields()
if "series" in grouping:
# Unstack so each series is a column
for i in range(len(header_fields) + 1):
dataframe = dataframe.unstack()
groups = {col: dataframe[col] for col in dataframe.columns}
if "year" in grouping:
interval = "year"
elif "month" in grouping:
interval = "month"
else:
interval = None
# Compute stats for each column, potentially grouped by year
series_infos = OrderedDict()
for header, series in groups.items():
if interval:
series_stats = self.boxplots_for_interval(series, interval)
else:
series_stats = [self.compute_boxplot(series)]
for series_stat in series_stats:
if isinstance(header, tuple):
value_name = header[0]
col_values = header[1:]
else:
value_name = header
col_values = []
col_names = tuple(zip(dataframe.columns.names[1:], col_values))
if interval in series_stat:
col_names += ((interval, series_stat[interval]),)
series_infos.setdefault(col_names, dict(col_names))
series_info = series_infos[col_names]
for stat_name, val in series_stat.items():
if stat_name != interval:
series_info[value_name + "-" + stat_name] = val
dataframe = DataFrame(list(series_infos.values()))
if "series" in grouping:
index = header_fields + [group_field]
unstack = len(header_fields)
if interval:
index = [interval] + index
unstack += 1
else:
index = [interval]
unstack = 0
dataframe.set_index(index, inplace=True)
dataframe.columns.name = ""
for i in range(unstack):
dataframe = dataframe.unstack()
# Remove blank columns
dataframe = dataframe.dropna(axis=1, how="all")
return dataframe
def get_grouping(self, dataframe):
request = self.context.get("request", None)
datasets = len(dataframe.columns)
if request:
group = request.GET.get("group", None)
if group:
return group
return default_grouping(datasets, self.get_date_field())
def boxplots_for_interval(self, series, interval):
def get_interval_name(date):
if isinstance(date, tuple):
date = date[0]
if hasattr(date, "count") and date.count("-") == 2:
date = datetime.datetime.strptime(date, "%Y-%m-%d")
return getattr(date, interval)
interval_stats = []
groups = series.groupby(get_interval_name).groups
for interval_name, group in groups.items():
stats = self.compute_boxplot(series[group])
stats[interval] = interval_name
interval_stats.append(stats)
return interval_stats
def compute_boxplot(self, series):
"""
Compute boxplot for given pandas Series.
"""
from matplotlib.cbook import boxplot_stats
series = series[series.notnull()]
if len(series.values) == 0:
return {}
elif not is_numeric_dtype(series):
return self.non_numeric_stats(series)
stats = boxplot_stats(list(series.values))[0]
stats["count"] = len(series.values)
stats["fliers"] = "|".join(map(str, stats["fliers"]))
return stats
def non_numeric_stats(self, series):
return {
"count": len(series),
"mode": series.mode()[0],
}
def get_group_field(self):
"""
Categorical field to group datasets by.
"""
return self.get_meta_option("boxplot_group")
def get_date_field(self):
"""
Date field to group datasets by year or month.
"""
return self.get_meta_option("boxplot_date", False)
def get_header_fields(self):
"""
Additional series metadata for boxplot column headers
"""
return self.get_meta_option("boxplot_header", [], True)
def get_extra_index_fields(self):
"""
Fields that identify each row but don't need to be considered for plot
"""
return self.get_meta_option("boxplot_extra_index", [], True)
class SimpleSerializer(serializers.Serializer):
"""
Simple serializer for non-model (simple) views
"""
def to_representation(self, obj):
return obj
def default_grouping(datasets, date_field=None):
"""
Heuristic for default boxplot grouping
"""
if datasets > 20 and date_field:
# Group all data by year
return "year"
elif datasets > 10 or not date_field:
# Compare series but don't break down by year
return "series"
else:
# 10 or fewer datasets, break down by both series and year
return "series-year"