|
1 | 1 | import numpy as np
|
| 2 | +import pytest |
| 3 | +import xarray as xr |
2 | 4 | from xarray.testing import assert_identical
|
3 | 5 |
|
4 | 6 | from cf_xarray.datasets import flag_excl
|
5 | 7 | from cf_xarray.groupers import FlagGrouper
|
6 | 8 |
|
7 | 9 |
|
8 | 10 | def test_flag_grouper():
|
9 |
| - ds = flag_excl.to_dataset().set_coords("flag_var") |
| 11 | + ds = flag_excl.to_dataset().set_coords("flag_var").copy(deep=True) |
10 | 12 | ds["foo"] = ("time", np.arange(8))
|
11 | 13 | actual = ds.groupby(flag_var=FlagGrouper()).mean()
|
12 | 14 | expected = ds.groupby("flag_var").mean()
|
13 | 15 | expected["flag_var"] = ["flag_1", "flag_2", "flag_3"]
|
14 | 16 | expected["flag_var"].attrs["standard_name"] = "flag_mutual_exclusive"
|
15 | 17 | assert_identical(actual, expected)
|
| 18 | + |
| 19 | + del ds.flag_var.attrs["flag_values"] |
| 20 | + with pytest.raises(ValueError): |
| 21 | + ds.groupby(flag_var=FlagGrouper()) |
| 22 | + |
| 23 | + ds.flag_var.attrs["flag_values"] = [0, 1, 2] |
| 24 | + del ds.flag_var.attrs["flag_meanings"] |
| 25 | + with pytest.raises(ValueError): |
| 26 | + ds.groupby(flag_var=FlagGrouper()) |
| 27 | + |
| 28 | + |
| 29 | +@pytest.mark.parametrize( |
| 30 | + "values", |
| 31 | + [ |
| 32 | + [1, 2], |
| 33 | + [1, 2, 3], # value out of range of flag_values |
| 34 | + ], |
| 35 | +) |
| 36 | +def test_flag_grouper_optimized(values): |
| 37 | + ds = xr.Dataset( |
| 38 | + {"foo": ("x", values, {"flag_values": [0, 1, 2], "flag_meanings": "a b c"})} |
| 39 | + ) |
| 40 | + ret = FlagGrouper().factorize(ds.foo) |
| 41 | + expected = ds.foo |
| 42 | + expected.data[ds.foo.data > 2] = -1 |
| 43 | + del ds.foo.attrs["flag_meanings"] |
| 44 | + del ds.foo.attrs["flag_values"] |
| 45 | + assert_identical(ret.codes, ds.foo) |
0 commit comments