|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "0", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# More climatology reductions using Cubed\n", |
| 9 | + "\n", |
| 10 | + "This is the Cubed equivalent of [More climatology reductions](climatology-hourly.ipynb).\n", |
| 11 | + "\n", |
| 12 | + "The task is to compute an hourly climatology from an hourly dataset with 744 hours in each chunk, using the \"map-reduce\" strategy." |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": null, |
| 18 | + "id": "1", |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [], |
| 21 | + "source": [ |
| 22 | + "import cubed\n", |
| 23 | + "import cubed.array_api as xp\n", |
| 24 | + "import numpy as np\n", |
| 25 | + "import pandas as pd\n", |
| 26 | + "import xarray as xr\n", |
| 27 | + "\n", |
| 28 | + "import flox.xarray" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "markdown", |
| 33 | + "id": "2", |
| 34 | + "metadata": {}, |
| 35 | + "source": [ |
| 36 | + "## Create data\n", |
| 37 | + "\n", |
| 38 | + "Note that we use fewer lat/long points so the computation can be run locally." |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "code", |
| 43 | + "execution_count": null, |
| 44 | + "id": "3", |
| 45 | + "metadata": {}, |
| 46 | + "outputs": [], |
| 47 | + "source": [ |
| 48 | + "spec = cubed.Spec(allowed_mem=\"2GB\")\n", |
| 49 | + "ds = xr.Dataset(\n", |
| 50 | + " {\n", |
| 51 | + " \"tp\": (\n", |
| 52 | + " (\"time\", \"latitude\", \"longitude\"),\n", |
| 53 | + " xp.ones((8760, 72, 144), chunks=(744, 5, 144), dtype=np.float32, spec=spec),\n", |
| 54 | + " )\n", |
| 55 | + " },\n", |
| 56 | + " coords={\"time\": pd.date_range(\"2021-01-01\", \"2021-12-31 23:59\", freq=\"h\")},\n", |
| 57 | + ")\n", |
| 58 | + "ds" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "markdown", |
| 63 | + "id": "4", |
| 64 | + "metadata": {}, |
| 65 | + "source": [ |
| 66 | + "## Computation" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "code", |
| 71 | + "execution_count": null, |
| 72 | + "id": "5", |
| 73 | + "metadata": {}, |
| 74 | + "outputs": [], |
| 75 | + "source": [ |
| 76 | + "hourly = flox.xarray.xarray_reduce(ds.tp, ds.time.dt.hour, func=\"mean\", reindex=True)\n", |
| 77 | + "hourly" |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_type": "code", |
| 82 | + "execution_count": null, |
| 83 | + "id": "6", |
| 84 | + "metadata": {}, |
| 85 | + "outputs": [], |
| 86 | + "source": [ |
| 87 | + "hourly.compute()" |
| 88 | + ] |
| 89 | + } |
| 90 | + ], |
| 91 | + "metadata": { |
| 92 | + "language_info": { |
| 93 | + "codemirror_mode": { |
| 94 | + "name": "ipython", |
| 95 | + "version": 3 |
| 96 | + }, |
| 97 | + "file_extension": ".py", |
| 98 | + "mimetype": "text/x-python", |
| 99 | + "name": "python", |
| 100 | + "nbconvert_exporter": "python", |
| 101 | + "pygments_lexer": "ipython3" |
| 102 | + } |
| 103 | + }, |
| 104 | + "nbformat": 4, |
| 105 | + "nbformat_minor": 5 |
| 106 | +} |
0 commit comments