-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathconvolutional_neural_network.py
126 lines (109 loc) · 4.82 KB
/
convolutional_neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
from sklearn.datasets import fetch_openml
from nn_layers import Conv, MaxPooling, FullyConnect, Activation, Softmax, BatchNormalization
# This implements Lenet-4, test on MNIST dataset
# gradient check for all layers for input x, w, b
class CNN(object):
def __init__(self, x_shape, label_num):
self.batch_size, lr = 32, 1e-3
# Conv > Normalization > Activation > Dropout > Pooling
conv1 = Conv(in_shape=x_shape, k_num=6, k_size=5, lr=lr)
bn1 = BatchNormalization(in_shape=conv1.out_shape, lr=lr)
relu1 = Activation(act_type="ReLU")
pool1 = MaxPooling(in_shape=conv1.out_shape, k_size=2)
conv2 = Conv(in_shape=pool1.out_shape, k_num=16, k_size=3, lr=lr)
bn2 = BatchNormalization(in_shape=conv2.out_shape, lr=lr)
relu2 = Activation(act_type="ReLU")
pool2 = MaxPooling(in_shape=conv2.out_shape, k_size=2)
fc1 = FullyConnect(pool2.out_shape, [120], lr=lr)
bn3 = BatchNormalization(in_shape=[120], lr=lr)
relu3 = Activation(act_type="ReLU")
fc2 = FullyConnect([120], [label_num], lr=lr)
softmax = Softmax()
self.layers = [
conv1, bn1, relu1, pool1,
conv2, bn2, relu2, pool2,
fc1, bn3, relu3,
fc2, softmax
]
def fit(self, train_x, labels):
n_data = train_x.shape[0]
train_y = np.zeros((n_data, 10))
train_y[np.arange(n_data), labels] = 1
for epoch in range(3):
# mini batch
permut = np.random.permutation(
n_data // self.batch_size * self.batch_size).reshape([-1, self.batch_size])
total_loss = 0
for b_idx in range(permut.shape[0]):
x0 = train_x[permut[b_idx, :]]
y = train_y[permut[b_idx, :]]
out = x0
for layer in self.layers:
out = layer.forward(out)
batch_loss = self.layers[-1].loss(out, y)
if b_idx % 100 == 0:
print("epoch {} batch {} loss: {}".format(
epoch, b_idx, batch_loss))
grad = y # the last softmax layer calculates the pred - y
for layer in self.layers[::-1]:
grad = layer.gradient(grad)
for layer in self.layers:
layer.backward()
total_loss += batch_loss
print('acc', self.get_accuracy(train_x, labels),
'avg batch loss', total_loss / permut.shape[0])
def predict(self, x):
out = x
for layer in self.layers:
out = layer.predict_forward(out) if isinstance(
layer, BatchNormalization) else layer.forward(out)
return out
def get_accuracy(self, x, label):
n_correct = 0
for i in range(0, x.shape[0], self.batch_size):
x_batch, label_batch = x[
i: i + self.batch_size], label[i: i + self.batch_size]
n_correct += sum(np.argmax(self.predict(x_batch),
axis=1) == label_batch)
return n_correct / x.shape[0]
def gradient_check(conv=True):
if conv:
layera = Conv(in_shape=[16, 32, 28], k_num=12, k_size=3)
layerb = Conv(in_shape=[16, 32, 28], k_num=12, k_size=3)
else:
layera = FullyConnect(in_shape=[16, 32, 28], out_dim=12)
layerb = FullyConnect(in_shape=[16, 32, 28], out_dim=12)
act_layer = Activation(act_type='Tanh')
layerb.w = layera.w.copy()
layerb.b = layera.b.copy()
eps = 1e-4
x = np.random.randn(10, 16, 32, 28) * 10
for i in range(100):
idxes = tuple((np.random.uniform(0, 1, 4) * x.shape).astype(int))
x_a = x.copy()
x_b = x.copy()
x_a[idxes] += eps
x_b[idxes] -= eps
out = act_layer.forward(layera.forward(x))
gradient = layera.gradient(act_layer.gradient(np.ones(out.shape)))
delta_out = (act_layer.forward(layera.forward(x_a)) -
act_layer.forward(layerb.forward(x_b))).sum()
# the output should be in the order of eps*eps
print(idxes, (delta_out / eps / 2 - gradient[idxes]) / eps / eps)
def main():
x, y = fetch_openml('mnist_784', return_X_y=True, data_home="data", as_frame=False)
x = x.reshape(-1, 1, 28, 28)
test_ratio = 0.2
test_split = np.random.uniform(0, 1, x.shape[0])
train_x, train_y = x[test_split >= test_ratio] / \
x.max(), y.astype(np.int_)[test_split >= test_ratio]
test_x, test_y = x[test_split < test_ratio] / \
x.max(), y.astype(np.int_)[test_split < test_ratio]
cnn = CNN(x.shape[1:4], 10)
cnn.fit(train_x, train_y)
print('train accuracy', cnn.get_accuracy(train_x, train_y))
print('test accuracy', cnn.get_accuracy(test_x, test_y))
if __name__ == "__main__":
# gradient_check()
main()