-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathoptimization_visualization.py
137 lines (113 loc) · 4.75 KB
/
optimization_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
import matplotlib.pyplot as plt
# implements and visualize Gradient Descent, Momentum, Nesterov, AdaGrad,
# RMSprop, Adam, and Simulated Annealing
class Optimization(object):
def __init__(self):
self.optimizers = {'GD': self.gradient_descent, 'Momentum': self.momentum, 'Nesterov': self.nesterov,
'AdaGrad': self.adagrad, 'RMSprop': self.rmsprop, 'Adam': self.adam}
self.gamma = 0.8
self.eps = 1e-8
self.reset()
def reset(self, lr=0.001):
self.pos = np.array([-10.0, -5.0])
self.mom = np.zeros_like(self.pos)
self.cache = np.zeros_like(self.pos)
self.adam_iter = 1
self.learning_rate = lr
def gradient_descent(self, grad):
self.pos -= self.learning_rate * grad
def momentum(self, grad):
self.mom = self.gamma * self.mom + self.learning_rate * grad
self.pos -= self.mom
def nesterov(self, grad):
mom_v_prev = self.mom
self.mom = self.gamma * self.mom + self.learning_rate * grad
self.pos -= ((1 + self.gamma) * self.mom - self.gamma * mom_v_prev)
def adagrad(self, grad):
self.cache += np.square(grad)
self.pos -= self.learning_rate * grad / \
(np.sqrt(self.cache) + self.eps)
def rmsprop(self, grad):
self.cache = self.gamma * self.cache + \
(1 - self.gamma) * np.square(grad)
self.pos -= self.learning_rate * grad / \
(np.sqrt(self.cache) + self.eps)
def adam(self, grad):
beta1 = 0.5
beta2 = 0.8
self.mom = beta1 * self.mom + (1 - beta1) * grad
self.cache = beta2 * self.cache + (1 - beta2) * np.square(grad)
self.pos -= self.learning_rate * self.mom / \
(1 - beta1**self.adam_iter) / \
(np.sqrt(self.cache / (1 - beta2**self.adam_iter)) + self.eps)
self.adam_iter += 1
def optimize(self, opt_algo, grad_func, x, y):
trace = [self.pos.copy()]
for i in range(30):
grad = grad_func(self.pos, x, y)
self.optimizers[opt_algo](grad)
if np.sum(np.square(self.pos - np.array([3, 5]))) < 1:
break
trace.append(self.pos.copy())
return np.array(trace)
class Annealing(object):
def __init__(self):
self.learning_rate = 0.5
self.pos = np.array([-10.0, -5.0])
self.iterations = 100
def transfer_prob(self, e_old, e_new, t):
if e_old > e_new:
return 1
else:
return np.exp((e_old - e_new) / t)
def annealing(self, x, y):
trace = [self.pos.copy()]
for i in range(self.iterations):
t = 1 - i / self.iterations
radius, theta = 5 * self.learning_rate * np.random.uniform(), np.random.uniform() * \
2 * np.pi - np.pi
pos_next = self.pos + radius * \
np.array([np.cos(theta), np.sin(theta)])
p = self.transfer_prob(loss(self.pos, x, y),
loss(pos_next, x, y), t)
if p >= np.random.uniform():
self.pos = pos_next
trace.append(self.pos.copy())
if np.sum(np.square(self.pos - np.array([3, 5]))) < 1:
break
return np.array(trace)
def loss(w, x, y): # w:1*2
return np.mean(np.square(w.reshape((1, 2)).dot(x) - y)) / 2
def grad(w, x, y):
y_hat = w.dot(x)
return (y_hat - y).reshape(1, -1).dot(x.T).flatten()
def main():
dim = 400
x = np.linspace(-1, 1, dim)
y = 3 * x + 5 + np.random.randn(dim)
x_expand = np.concatenate([x.reshape((1, dim)), np.ones((1, dim))], axis=0)
w_mesh, b_mesh = np.meshgrid(
np.linspace(-12, 15, 100), np.linspace(-5, 15, 100))
loss_grid = np.array([
loss(np.array([w, b]), x_expand, y)
for w, b in zip(np.ravel(w_mesh), np.ravel(b_mesh))
])
plt.contour(w_mesh, b_mesh, loss_grid.reshape(
w_mesh.shape), 70, cmap='bwr_r', alpha=0.5)
opt = Optimization()
an = Annealing()
for i, opt_algo, lr in zip(range(7), ['GD', 'Momentum', 'Nesterov', 'AdaGrad', 'RMSprop', 'Adam', 'Annealing'], [0.0035, 0.0005, 0.0006, 10, 2, 5, 0.5]):
if opt_algo == 'Annealing':
trace = an.annealing(x_expand, y)
else:
opt.reset(lr)
trace = opt.optimize(opt_algo, grad, x_expand, y)
print(f'{opt_algo} finished with {trace.shape[0]} steps')
angles = trace[1:] - trace[:-1]
q = plt.quiver(trace[:-1, 0], trace[:-1, 1], angles[:, 0], angles[:, 1],
scale_units='xy', angles='xy', scale=1, color=plt.cm.get_cmap('Set1')(i), alpha=1, width=0.004)
plt.quiverkey(q, X=1.06, Y=0.9 - i * 0.1, U=1, label=opt_algo)
plt.show()
if __name__ == "__main__":
main()