Skip to content

Commit bbd2569

Browse files
authored
feat(numpy): add term entry for .repeat() function (#6432)
* feat(numpy): add term entry for .repeat() function * Update repeat.md * minor fixes ---------
1 parent 1eb5a51 commit bbd2569

File tree

1 file changed

+96
-0
lines changed
  • content/numpy/concepts/built-in-functions/terms/repeat

1 file changed

+96
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,96 @@
1+
---
2+
Title: '.repeat()'
3+
Description: 'Duplicates elements in an array along a given axis.'
4+
Subjects:
5+
- 'Computer Science'
6+
- 'Data Science'
7+
Tags:
8+
- 'Arrays'
9+
- 'Data Structures'
10+
- 'Functions'
11+
- 'NumPy'
12+
CatalogContent:
13+
- 'learn-python-3'
14+
- 'paths/data-science'
15+
---
16+
17+
The **`.repeat()`** function in NumPy is used to duplicate items in an array. It provides the option to specify the number of times each element appears, and whether that repetition happens across a specific axis or not. If no axis is mentioned, the array is flattened before repeating.
18+
19+
## Syntax
20+
21+
```pseudo
22+
numpy.repeat(a, repeats, axis=None)
23+
```
24+
25+
**Parameters:**
26+
27+
- `a`: The array to work with. This is where the elements come from.
28+
- `repeats`: An `int` or array of `ints`. If an `int`, each element of `a` is repeated that many times. If an array, it must match the length of `a` (if `axis=None`) or the length of `a` along the specified axis.
29+
- `axis` (Optional): Sets the direction for repeating.
30+
31+
**Return value:**
32+
33+
Returns a NumPy array with repeated elements. The shape of the result depends on the shape of `a`, the `repeats` value, and whether an `axis` is specified.
34+
35+
## Example 1: Repeating Elements Without Specifying the `axis` Parameter
36+
37+
Here's a simple example where each value in a one-dimensional array gets repeated twice:
38+
39+
```py
40+
import numpy as np
41+
42+
# Create an array
43+
arr = np.array([1, 2, 3])
44+
45+
# Repeat each element in the array 2 times
46+
print(np.repeat(arr, 2))
47+
```
48+
49+
The above code produces the following output:
50+
51+
```shell
52+
[1 1 2 2 3 3]
53+
```
54+
55+
## Example 2: Directional Repetition Using the `axis` Parameter
56+
57+
For multi-dimensional arrays, using the `axis` parameter controls which direction the repetition flows:
58+
59+
```py
60+
import numpy as np
61+
62+
arr2d = np.array([[1, 2], [3, 4]])
63+
64+
# Repeat each element in the array 2 times along axis 0
65+
print(np.repeat(arr2d, 2, axis=0))
66+
67+
# Repeat each element in the array 2 times along axis 1
68+
print(np.repeat(arr2d, 2, axis=1))
69+
```
70+
71+
The above code produces the following output:
72+
73+
```shell
74+
[[1 2]
75+
[1 2]
76+
[3 4]
77+
[3 4]]
78+
[[1 1 2 2]
79+
[3 3 4 4]]
80+
```
81+
82+
## Codebyte Example: Repeating Each Element Three Times
83+
84+
This codebyte example repeats every item in an array three times in a row:
85+
86+
```codebyte/python
87+
import numpy as np
88+
89+
# Create an array
90+
arr = np.array([4, 5, 6])
91+
92+
# Repeat each element in the array 3 times
93+
output = np.repeat(arr, 3)
94+
95+
print(output)
96+
```

0 commit comments

Comments
 (0)