This MCP server provides access to OpenAI's websearch functionality through the Model Context Protocol. It allows AI assistants to search the web during conversations with users, providing up-to-date information that may not be available in the assistant's training data. The server can be installed and configured for use with Claude.app or Zed editor.
!!Can using this command auto update configure file(Recommend)
OPENAI_API_KEY=sk-xxxx uv run --with uv --with openai-websearch-mcp openai-websearch-mcp-install
sk-xxxx is your API key. You can get it from openai's open platform
Conming soon
Conming soon
web_search
- Call openai websearch as tool.- Required arguments:
type
(string): web_search_previewsearch_context_size
(string): High level guidance for the amount of context window space to use for the search. One of low, medium, or high. medium is the default.user_location
(object or null)type
(string): The type of location > approximation. Always approximate.city
(string): Free text input for the city of the user, e.g. San Francisco.country
(string): The two-letter ISO country code of the user, e.g. US.region
(string): Free text input for the region of the user, e.g. California.timezone
(string): The IANA timezone of the user, e.g. America/Los_Angeles.
- Required arguments:
Please make sure uvx
is installed before installation
Add to your Claude settings:
1、Using uvx
"mcpServers": {
"openai-websearch-mcp": {
"command": "uvx",
"args": ["openai-websearch-mcp"],
"env": {
"OPENAI_API_KEY": "your-api-key-here"
}
}
}
2、Using pip installation
1)install openai-websearch-mcp
via pip:
pip install openai-websearch-mcp
2)modify your Claude settings
"mcpServers": {
"openai-websearch-mcp": {
"command": "python",
"args": ["-m", "openai_websearch_mcp"],
"env": {
"OPENAI_API_KEY": "your-api-key-here"
}
}
}
Add to your Zed settings.json:
Using uvx
"context_servers": [
"openai-websearch-mcp": {
"command": "uvx",
"args": ["openai-websearch-mcp"],
"env": {
"OPENAI_API_KEY": "your-api-key-here"
}
}
],
Using pip installation
"context_servers": {
"openai-websearch-mcp": {
"command": "python",
"args": ["-m", "openai_websearch_mcp"],
"env": {
"OPENAI_API_KEY": "your-api-key-here"
}
}
},
You can use the MCP inspector to debug the server. For uvx installations:
npx @modelcontextprotocol/inspector uvx openai-websearch-mcp