Skip to content

#3325 #11810

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 7 commits into from
Closed

#3325 #11810

Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions pytorch_lightning/strategies/ddp.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
import numpy as np
import torch
import torch.distributed
from torch.distributed.algorithms.join import Join
from torch.nn import Module
from torch.nn.parallel.distributed import DistributedDataParallel

Expand Down Expand Up @@ -88,6 +89,7 @@ def __init__(
ddp_comm_hook: Optional[callable] = None,
ddp_comm_wrapper: Optional[callable] = None,
model_averaging_period: Optional[int] = None,
uneven_inputs_support: bool = False,
**kwargs: Union[Any, Dict[str, Any]],
) -> None:
super().__init__(
Expand All @@ -106,6 +108,7 @@ def __init__(
self._ddp_comm_hook = ddp_comm_hook
self._ddp_comm_wrapper = ddp_comm_wrapper
self._model_averaging_period = model_averaging_period
self._uneven_inputs_support = uneven_inputs_support
self._pids: Optional[List[int]] = None
self._sync_dir: Optional[str] = None
self._rank_0_has_called_call_children_scripts: bool = False
Expand Down Expand Up @@ -142,6 +145,14 @@ def distributed_sampler_kwargs(self):
def _is_single_process_single_device(self) -> bool:
return True

@property
def uneven_inputs_support(self) -> bool:
return self._uneven_inputs_support

@uneven_inputs_support.setter
def uneven_inputs_support(self, uneven_inputs_support: bool) -> None:
self._uneven_inputs_support = uneven_inputs_support

def setup_environment(self) -> None:
# start the other scripts
if not self.cluster_environment.creates_processes_externally:
Expand Down Expand Up @@ -397,6 +408,10 @@ def reduce(self, tensor, group: Optional[Any] = None, reduce_op: Union[ReduceOp,

def training_step(self, *args, **kwargs) -> STEP_OUTPUT:
with self.precision_plugin.train_step_context():
# TODO: Currently a placeholder, implement Joinable and custom join hooks
if self.uneven_inputs_support:
with Join([self.model]):
return self.model(*args, **kwargs)
return self.model(*args, **kwargs)

def validation_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]:
Expand Down Expand Up @@ -428,6 +443,12 @@ def register_strategies(cls, strategy_registry: Dict) -> None:
description="DDP Strategy with `find_unused_parameters` as False",
find_unused_parameters=False,
)
strategy_registry.register(
"ddp_uneven_inputs_support",
cls,
description="DDP Strategy with `uneven_inputs_support` as True",
uneven_inputs_support=True,
)

def _should_run_deadlock_detection(self) -> bool:
"""Determines whether the plugin will perform process reconciliation in case of errors.
Expand Down
21 changes: 21 additions & 0 deletions pytorch_lightning/strategies/ddp_spawn.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
import torch
import torch.distributed
import torch.multiprocessing as mp
from torch.distributed.algorithms.join import Join
from torch.nn import Module
from torch.nn.parallel.distributed import DistributedDataParallel

Expand Down Expand Up @@ -65,6 +66,7 @@ def __init__(
ddp_comm_state: Optional[object] = None,
ddp_comm_hook: Optional[callable] = None,
ddp_comm_wrapper: Optional[callable] = None,
uneven_inputs_support: bool = False,
**kwargs: Any,
):
super().__init__(
Expand All @@ -80,6 +82,7 @@ def __init__(
self._ddp_comm_state = ddp_comm_state
self._ddp_comm_hook = ddp_comm_hook
self._ddp_comm_wrapper = ddp_comm_wrapper
self._uneven_inputs_support = uneven_inputs_support
self._local_rank = 0
self.set_world_ranks()

Expand Down Expand Up @@ -114,6 +117,14 @@ def distributed_sampler_kwargs(self):
def _is_single_process_single_device(self):
return True

@property
def uneven_inputs_support(self) -> bool:
return self._uneven_inputs_support

@uneven_inputs_support.setter
def uneven_inputs_support(self, uneven_inputs_support: bool) -> None:
self._uneven_inputs_support = uneven_inputs_support

def setup(self, trainer: "pl.Trainer") -> None:
os.environ["MASTER_PORT"] = str(self.cluster_environment.main_port)
super().setup(trainer)
Expand Down Expand Up @@ -311,6 +322,10 @@ def reduce(self, tensor, group: Optional[Any] = None, reduce_op: Union[ReduceOp,

def training_step(self, *args, **kwargs) -> STEP_OUTPUT:
with self.precision_plugin.train_step_context():
# TODO: Currently a placeholder, implement Joinable and custom join hooks
if self.uneven_inputs_support:
with Join([self.model]):
return self.model(*args, **kwargs)
return self.model(*args, **kwargs)

def validation_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]:
Expand Down Expand Up @@ -367,6 +382,12 @@ def register_strategies(cls, strategy_registry: Dict) -> None:
description="DDPSpawn Strategy with `find_unused_parameters` as False",
find_unused_parameters=False,
)
strategy_registry.register(
"ddp_spawn_uneven_inputs_support",
cls,
description="DDP Spawn Strategy with `uneven_inputs_support` as True",
uneven_inputs_support=True,
)

def teardown(self) -> None:
super().teardown()
Expand Down
11 changes: 10 additions & 1 deletion pytorch_lightning/trainer/connectors/data_connector.py
Original file line number Diff line number Diff line change
Expand Up @@ -409,8 +409,8 @@ def _resolve_sampler(self, dataloader: DataLoader, shuffle: bool, mode: Optional

return dataloader.sampler

@staticmethod
def _get_distributed_sampler(
self,
dataloader: DataLoader,
shuffle: bool,
overfit_batches: Union[int, float],
Expand All @@ -420,6 +420,15 @@ def _get_distributed_sampler(
"""This function is used to created the distributed sampler injected within the user DataLoader."""
kwargs["shuffle"] = shuffle and not overfit_batches
kwargs.setdefault("seed", int(os.getenv("PL_GLOBAL_SEED", 0)))
if getattr(self.trainer.strategy, "uneven_inputs_support", False) and mode == RunningStage.TRAINING:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I would much prefer not to do it like this and instead try the approach here #11756

if len(dataloader.dataset) % kwargs["num_replicas"] != 0:
return UnrepeatedDistributedSampler(dataloader.dataset, **kwargs)
rank_zero_warn(
f"You have passed `uneven_inputs_support=True` for the {self.trainer.strategy.name} strategy. "
"But as the dataset length is evenly divisible by number of replicas, then there "
"is no need to support uneven inputs, since the dataset will be split equally."
)
self.trainer.strategy.uneven_inputs_support = False
cls = UnrepeatedDistributedSampler if mode == RunningStage.PREDICTING else DistributedSampler
sampler = cls(dataloader.dataset, **kwargs)
return sampler
Expand Down