Skip to content

Update tuner docs #15087

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Oct 12, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
75 changes: 49 additions & 26 deletions docs/source-pytorch/advanced/training_tricks.rst
Original file line number Diff line number Diff line change
Expand Up @@ -191,29 +191,52 @@ The algorithm in short works by:
Customizing Batch Size Finder
=============================

You can also customize the :class:`~pytorch_lightning.callbacks.batch_size_finder.BatchSizeFinder` callback to run at different epochs. This feature is useful while fine-tuning models since
you can't always use the same batch size after unfreezing the backbone.
1. You can also customize the :class:`~pytorch_lightning.callbacks.batch_size_finder.BatchSizeFinder` callback to run
at different epochs. This feature is useful while fine-tuning models since you can't always use the same batch size after
unfreezing the backbone.

.. code-block:: python

from pytorch_lightning.callbacks import BatchSizeFinder
from pytorch_lightning.callbacks import BatchSizeFinder


class FineTuneBatchSizeFinder(BatchSizeFinder):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.milestones = milestones
class FineTuneBatchSizeFinder(BatchSizeFinder):
def __init__(self, milestones, *args, **kwargs):
super().__init__(*args, **kwargs)
self.milestones = milestones

def on_fit_start(self, *args, **kwargs):
return
def on_fit_start(self, *args, **kwargs):
return

def on_train_epoch_start(self, trainer, pl_module):
if trainer.current_epoch in self.milestones or trainer.current_epoch == 0:
self.scale_batch_size(trainer, pl_module)
def on_train_epoch_start(self, trainer, pl_module):
if trainer.current_epoch in self.milestones or trainer.current_epoch == 0:
self.scale_batch_size(trainer, pl_module)


trainer = Trainer(callbacks=[FineTuneBatchSizeFinder(milestones=(5, 10))])
trainer.fit(...)
trainer = Trainer(callbacks=[FineTuneBatchSizeFinder(milestones=(5, 10))])
trainer.fit(...)


2. Run batch size finder for ``validate``/``test``/``predict``.

.. code-block:: python

from pytorch_lightning.callbacks import BatchSizeFinder


class EvalBatchSizeFinder(BatchSizeFinder):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

def on_fit_start(self, *args, **kwargs):
return

def on_test_start(self, trainer, pl_module):
self.scale_batch_size(trainer, pl_module)


trainer = Trainer(callbacks=[EvalBatchSizeFinder()])
trainer.test(...)


----------
Expand Down Expand Up @@ -336,24 +359,24 @@ You can also customize the :class:`~pytorch_lightning.callbacks.lr_finder.Learni

.. code-block:: python

from pytorch_lightning.callbacks import LearningRateFinder
from pytorch_lightning.callbacks import LearningRateFinder


class FineTuneLearningRateFinder(LearningRateFinder):
def __init__(self, milestones=(5, 10), *args, **kwargs):
super().__init__(*args, **kwargs)
self.milestones = milestones
class FineTuneLearningRateFinder(LearningRateFinder):
def __init__(self, milestones, *args, **kwargs):
super().__init__(*args, **kwargs)
self.milestones = milestones

def on_fit_start(self, *args, **kwargs):
return
def on_fit_start(self, *args, **kwargs):
return

def on_train_epoch_start(self, trainer, pl_module):
if trainer.current_epoch in self.milestones or trainer.current_epoch == 0:
self.lr_find(trainer, pl_module)
def on_train_epoch_start(self, trainer, pl_module):
if trainer.current_epoch in self.milestones or trainer.current_epoch == 0:
self.lr_find(trainer, pl_module)


trainer = Trainer(callbacks=[FineTuneLearningRateFinder(milestones=(5, 10))])
trainer.fit(...)
trainer = Trainer(callbacks=[FineTuneLearningRateFinder(milestones=(5, 10))])
trainer.fit(...)


.. figure:: ../_static/images/trainer/lr_finder.png
Expand Down
28 changes: 27 additions & 1 deletion src/pytorch_lightning/callbacks/batch_size_finder.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,8 +60,14 @@ class BatchSizeFinder(Callback):

Example::

# 1. Customize the BatchSizeFinder callback to run at different epochs. This feature is
# useful while fine-tuning models since you can't always use the same batch size after
# unfreezing the backbone.
from pytorch_lightning.callbacks import BatchSizeFinder


class FineTuneBatchSizeFinder(BatchSizeFinder):
def __init__(self, *args, **kwargs):
def __init__(self, milestones, *args, **kwargs):
super().__init__(*args, **kwargs)
self.milestones = milestones

Expand All @@ -75,6 +81,26 @@ def on_train_epoch_start(self, trainer, pl_module):

trainer = Trainer(callbacks=[FineTuneBatchSizeFinder(milestones=(5, 10))])
trainer.fit(...)

Example::

# 2. Run batch size finder for validate/test/predict.
from pytorch_lightning.callbacks import BatchSizeFinder


class EvalBatchSizeFinder(BatchSizeFinder):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

def on_fit_start(self, *args, **kwargs):
return

def on_test_start(self, trainer, pl_module):
self.scale_batch_size(trainer, pl_module)


trainer = Trainer(callbacks=[EvalBatchSizeFinder()])
trainer.test(...)
"""

SUPPORTED_MODES = ("power", "binsearch")
Expand Down
8 changes: 7 additions & 1 deletion src/pytorch_lightning/callbacks/lr_finder.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,8 +50,13 @@ class LearningRateFinder(Callback):

Example::

# Customize LearningRateFinder callback to run at different epochs.
# This feature is useful while fine-tuning models.
from pytorch_lightning.callbacks import LearningRateFinder


class FineTuneLearningRateFinder(LearningRateFinder):
def __init__(self, milestones=(5, 10), *args, **kwargs):
def __init__(self, milestones, *args, **kwargs):
super().__init__(*args, **kwargs)
self.milestones = milestones

Expand All @@ -62,6 +67,7 @@ def on_train_epoch_start(self, trainer, pl_module):
if trainer.current_epoch in self.milestones or trainer.current_epoch == 0:
self.lr_find(trainer, pl_module)


trainer = Trainer(callbacks=[FineTuneLearningRateFinder(milestones=(5, 10))])
trainer.fit(...)

Expand Down