Skip to content

replace utils.Progressbar with logbar #1343

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Feb 26, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions examples/benchmark/generation_speed.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,11 +24,11 @@
import torch
from datasets import Dataset, load_dataset
from gptqmodel import BACKEND, GPTQModel, QuantizeConfig
from gptqmodel.utils.progress import ProgressBar
from logbar import LogBar
from transformers import AutoTokenizer, GenerationConfig
from transformers.generation.logits_process import LogitsProcessor

logger = logging.getLogger(__name__)
logger = LogBar.shared()

random.seed(0)

Expand Down Expand Up @@ -195,7 +195,7 @@ def load_model_tokenizer(
def benchmark_generation_speed(model, tokenizer, examples, generation_config):
generation_time_list = []
num_generated_tokens_list = []
pb = ProgressBar(examples)
pb = logger.pb(examples)
for example in pb:
input_ids = example["input_ids"].to(model.device)

Expand Down
4 changes: 1 addition & 3 deletions gptqmodel/looper/module_looper.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,12 +32,10 @@
from ..utils.logger import setup_logger
from ..utils.model import (find_modules, get_device, get_module, get_module_by_name_prefix,
get_moe_layer_modules, move_to, nested_move_to)
from ..utils.progress import ProgressBar
from ..utils.torch import torch_empty_cache

logger = setup_logger()


class ModuleLooper():
def __init__(self, model: BaseGPTQModel, processors: List[LoopProcessor]):
self.processors = processors
Expand Down Expand Up @@ -194,7 +192,7 @@ def loop(self, auto_gc=True, calibration_enable_gpu_cache=True, buffered_fwd=Fal
num_experts=num_experts)

layer_count = len(layers)
quant_modules_pb = (ProgressBar(range(layer_count + 1 if self.gptq_model.quantize_config.lm_head else layer_count))
quant_modules_pb = (logger.pb(range(layer_count + 1 if self.gptq_model.quantize_config.lm_head else layer_count))
.manual()
.set(left_steps_offset=1))

Expand Down
3 changes: 1 addition & 2 deletions gptqmodel/models/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,6 @@
from ..utils.logger import setup_logger
from ..utils.model import (MODALITY, check_to_quantized, find_modules, get_device, get_module,
get_module_by_name_prefix, get_moe_layer_modules, move_to, nested_move_to, pack_model)
from ..utils.progress import ProgressBar
from ..utils.torch import torch_compile, torch_empty_cache
from ._const import CALIBRATION_DATASET_CONCAT_CHAR, CPU, DEFAULT_MAX_SHARD_SIZE, DEVICE, SUPPORTS_MODULE_TYPES
from .loader import ModelLoader
Expand Down Expand Up @@ -821,7 +820,7 @@ def store_input_hook(_, args, kwargs):
quantizers = {}

layer_count = len(layers)
quant_modules_pb = ProgressBar(range(layer_count + 1 if self.quantize_config.lm_head else layer_count)).manual()
quant_modules_pb = logger.pb(range(layer_count + 1 if self.quantize_config.lm_head else layer_count)).manual()
gpu_memorys = []
cpu_memorys = []
durations = []
Expand Down
4 changes: 2 additions & 2 deletions gptqmodel/nn_modules/qlinear/bitblas.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,11 +24,11 @@
import torch
import torch.nn as nn

from ...models._const import DEVICE, PLATFORM
from ...utils.logger import setup_logger
from ...adapter.adapter import Adapter, Lora
from ...models._const import DEVICE, PLATFORM
from ...nn_modules.qlinear import PackableQuantLinear
from ...utils import BACKEND
from ...utils.logger import setup_logger

logger = setup_logger()

Expand Down
4 changes: 2 additions & 2 deletions gptqmodel/nn_modules/qlinear/dynamic_cuda.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,10 +18,10 @@

import torch

from ...utils.backend import BACKEND
from ...models._const import DEVICE, PLATFORM
from ...adapter.adapter import Adapter, Lora
from ...models._const import DEVICE, PLATFORM
from ...nn_modules.qlinear.torch import TorchQuantLinear
from ...utils.backend import BACKEND
from ...utils.logger import setup_logger

logger = setup_logger()
Expand Down
2 changes: 1 addition & 1 deletion gptqmodel/nn_modules/qlinear/exllama.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,10 +21,10 @@

import torch

from ...utils.backend import BACKEND
from ...adapter.adapter import Adapter, Lora
from ...models._const import DEVICE, PLATFORM
from ...nn_modules.qlinear import BaseQuantLinear
from ...utils.backend import BACKEND

exllama_import_exception = None
try:
Expand Down
4 changes: 2 additions & 2 deletions gptqmodel/nn_modules/qlinear/exllama_eora.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,10 +20,10 @@
import torch
from torch.nn import Parameter

from ...models._const import DEVICE, PLATFORM
from ...utils.logger import setup_logger
from ...adapter.adapter import Adapter, Lora
from ...models._const import DEVICE, PLATFORM
from ...nn_modules.qlinear import BaseQuantLinear
from ...utils.logger import setup_logger

exllama_v2v_import_exception = None

Expand Down
2 changes: 1 addition & 1 deletion gptqmodel/nn_modules/qlinear/exllamav2.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,10 +20,10 @@

import torch

from ...utils.backend import BACKEND
from ...adapter.adapter import Adapter, Lora
from ...models._const import DEVICE, PLATFORM
from ...nn_modules.qlinear import BaseQuantLinear
from ...utils.backend import BACKEND
from ...utils.logger import setup_logger

exllama_v2_import_exception = None
Expand Down
4 changes: 2 additions & 2 deletions gptqmodel/nn_modules/qlinear/ipex.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,11 @@

import torch

from ...adapter.adapter import Adapter, Lora
from ...models._const import DEVICE, PLATFORM
from ...utils.backend import BACKEND
from ...utils.logger import setup_logger
from ...utils.torch import torch_compile
from ...adapter.adapter import Adapter, Lora
from ...models._const import DEVICE, PLATFORM
from . import PackableQuantLinear

logger = setup_logger()
Expand Down
6 changes: 3 additions & 3 deletions gptqmodel/nn_modules/qlinear/marlin.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,12 +23,12 @@
import torch
from torch.nn.parameter import Parameter

from ...models._const import DEVICE, PLATFORM
from ...utils.logger import setup_logger
from ...utils.rocm import IS_ROCM
from ...adapter.adapter import Adapter, Lora
from ...models._const import DEVICE, PLATFORM
from ...nn_modules.qlinear import BaseQuantLinear
from ...utils.backend import BACKEND
from ...utils.logger import setup_logger
from ...utils.rocm import IS_ROCM

marlin_import_exception = None
try:
Expand Down
6 changes: 3 additions & 3 deletions gptqmodel/nn_modules/qlinear/torch.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,12 +19,12 @@
import torch.nn as nn
from transformers import PreTrainedModel

from ...utils.backend import BACKEND
from ...models._const import DEVICE, PLATFORM
from ...utils.torch import torch_compile
from ...adapter.adapter import Adapter, Lora
from ...models._const import DEVICE, PLATFORM
from ...nn_modules.qlinear import BaseQuantLinear, PackableQuantLinear
from ...utils.backend import BACKEND
from ...utils.logger import setup_logger
from ...utils.torch import torch_compile

logger = setup_logger()

Expand Down
4 changes: 2 additions & 2 deletions gptqmodel/nn_modules/qlinear/tritonv2.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,10 +19,10 @@
import torch
from packaging import version

from ...utils.backend import BACKEND
from ...adapter.adapter import Adapter, Lora
from ...models._const import DEVICE, PLATFORM
from ...utils.backend import BACKEND
from ...utils.logger import setup_logger
from ...adapter.adapter import Adapter, Lora
from . import PackableQuantLinear

try:
Expand Down
3 changes: 1 addition & 2 deletions gptqmodel/utils/bitblas.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,6 @@
from ..quantization import FORMAT, QuantizeConfig
from ..utils.logger import setup_logger
from .model import load_checkpoint_in_model_then_tie_weights
from .progress import ProgressBar
from .torch import torch_empty_cache

logger = setup_logger()
Expand Down Expand Up @@ -92,7 +91,7 @@ def convert_to_bitblas(model, model_quantlinear, qcfg: QuantizeConfig, sym: bool

# Note that due to tvm compilation of per layer modules shapes, the first layer loop is
# relatively much slower if caching is not available. estimate time remaining is highly inaccurate
for name, module in ProgressBar(list(model.named_modules())).title(message):
for name, module in logger.pb(list(model.named_modules())).title(message):
if not isinstance(module, model_quantlinear):
continue

Expand Down
Loading
Loading