Skip to content

Add small100 to pythainlp.translate #815

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jul 14, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 25 additions & 5 deletions pythainlp/translate/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,19 +41,26 @@ class Translate:
"""

def __init__(
self, src_lang: str, target_lang: str, use_gpu: bool = False
self, src_lang: str, target_lang: str, engine: str="default", use_gpu: bool = False
) -> None:
"""
:param str src_lang: source language
:param str target_lang: target language
:param str engine: Machine Translation engine
:param bool use_gpu: load model to gpu (Default is False)

**Options for engine*
* *default* - The engine default by each a language.
* *small100* - A multilingual machine translation model (covering 100 languages)

**Options for source & target language**
* *th* - *en* - Thai to English
* *en* - *th* - English to Thai
* *th* - *zh* - Thai to Chinese
* *zh* - *th* - Chinese to Thai
* *th* - *fr* - Thai to French
* *th* - *xx* - Thai to xx (xx is language code). It uses small100 model.
* *xx* - *th* - xx to Thai (xx is language code). It uses small100 model.

:Example:

Expand All @@ -66,10 +73,21 @@ def __init__(
# output: I love cat.
"""
self.model = None
self.load_model(src_lang, target_lang, use_gpu)

def load_model(self, src_lang: str, target_lang: str, use_gpu: bool):
if src_lang == "th" and target_lang == "en":
self.engine = engine
self.src_lang = src_lang
self.use_gpu = use_gpu
self.target_lang = target_lang
self.load_model()

def load_model(self):
src_lang = self.src_lang
target_lang = self.target_lang
use_gpu = self.use_gpu
if self.engine == "small100":
from .small100 import Small100Translator

self.model = Small100Translator(use_gpu)
elif src_lang == "th" and target_lang == "en":
from pythainlp.translate.en_th import ThEnTranslator

self.model = ThEnTranslator(use_gpu)
Expand Down Expand Up @@ -100,4 +118,6 @@ def translate(self, text) -> str:
:return: translated text in target language
:rtype: str
"""
if self.engine == "small100":
return self.model.translate(text, tgt_lang=self.target_lang)
return self.model.translate(text)
60 changes: 60 additions & 0 deletions pythainlp/translate/small100.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
from transformers import M2M100ForConditionalGeneration
from .tokenization_small100 import SMALL100Tokenizer

class Small100Translator:
"""
Machine Translation with small100 model

- Huggingface https://huggingface.co/alirezamsh/small100

:param bool use_gpu : load model to gpu (Default is False)
"""

def __init__(
self,
use_gpu: bool = False,
pretrained: str = "alirezamsh/small100",
) -> None:
self.pretrained = pretrained
self.model = M2M100ForConditionalGeneration.from_pretrained(self.pretrained)
self.tgt_lang = None
if use_gpu:
self.model = self.model.cuda()

def translate(self, text: str, tgt_lang: str="en") -> str:
"""
Translate text from X to X

:param str text: input text in source language
:param str tgt_lang: target language
:return: translated text in target language
:rtype: str

:Example:

::

from pythainlp.translate.small100 import Small100Translator

mt = Small100Translator()

# Translate text from Thai to English
mt.translate("ทดสอบระบบ", tgt_lang="en")
# output: 'Testing system'

# Translate text from Thai to Chinese
mt.translate("ทดสอบระบบ", tgt_lang="zh")
# output: '系统测试'

# Translate text from Thai to French
mt.translate("ทดสอบระบบ", tgt_lang="fr")
# output: 'Test du système'

"""
if tgt_lang!=self.tgt_lang:
self.tokenizer = SMALL100Tokenizer.from_pretrained(self.pretrained, tgt_lang=tgt_lang)
self.tgt_lang = tgt_lang
self.translated = self.model.generate(
**self.tokenizer(text, return_tensors="pt")
)
return self.tokenizer.batch_decode(self.translated, skip_special_tokens=True)[0]
Loading