Skip to content

Added faster_perfect_numbers and mersenne_primes #355

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Aug 25, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 40 additions & 0 deletions src/math/faster_perfect_numbers.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
use super::{mersenne_primes::is_mersenne_prime, prime_numbers::prime_numbers};
use std::convert::TryInto;

/*
Generates a list of perfect numbers till `num` using the Lucas Lehmer test algorithm.
url : https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test
*/
pub fn generate_perfect_numbers(num: usize) -> Vec<usize> {
let mut results = Vec::new();
let prime_limit = get_prime_limit(num);

for i in prime_numbers(prime_limit).iter() {
let prime = *i;
if is_mersenne_prime(prime) {
results.push(
(2_usize.pow(prime.try_into().unwrap()) - 1)
* (2_usize.pow((prime - 1).try_into().unwrap())),
);
}
}
results.into_iter().filter(|x| *x <= num).collect()
}

// Gets an approximate limit for the generate_perfect_numbers function
fn get_prime_limit(num: usize) -> usize {
(((num * 8 + 1) as f64).log2() as usize) / 2_usize
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn perfect_numbers_till_n() {
let n = 335564540;
assert_eq!(generate_perfect_numbers(n), [6, 28, 496, 8128, 33550336]);
assert_eq!(generate_perfect_numbers(40), [6, 28]);
assert_eq!(generate_perfect_numbers(0), []);
}
}
39 changes: 39 additions & 0 deletions src/math/mersenne_primes.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
// mersenne prime : https://en.wikipedia.org/wiki/Mersenne_prime
pub fn is_mersenne_prime(n: usize) -> bool {
if n == 2 {
return true;
}
let mut s = 4;
let m = 2_usize.pow(std::convert::TryInto::try_into(n).unwrap()) - 1;
for _ in 0..n - 2 {
s = ((s * s) - 2) % m;
}
s == 0
}

pub fn get_mersenne_primes(limit: usize) -> Vec<usize> {
let mut results: Vec<usize> = Vec::new();
for num in 1..=limit {
if is_mersenne_prime(num) {
results.push(num);
}
}
results
}

#[cfg(test)]
mod tests {
use super::{get_mersenne_primes, is_mersenne_prime};

#[test]
fn validity_check() {
assert!(is_mersenne_prime(3));
assert!(is_mersenne_prime(13));
assert!(!is_mersenne_prime(32));
}

#[allow(dead_code)]
fn generation_check() {
assert_eq!(get_mersenne_primes(30), [2, 3, 5, 7, 13, 17, 19]);
}
}
4 changes: 4 additions & 0 deletions src/math/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -3,13 +3,15 @@ mod baby_step_giant_step;
mod extended_euclidean_algorithm;
mod fast_fourier_transform;
mod fast_power;
mod faster_perfect_numbers;
mod gaussian_elimination;
mod gcd_of_n_numbers;
mod greatest_common_divisor;
mod karatsuba_multiplication;
mod lcm_of_n_numbers;
mod linear_sieve;
mod matrix_ops;
mod mersenne_primes;
mod miller_rabin;
mod newton_raphson;
mod nthprime;
Expand All @@ -35,6 +37,7 @@ pub use self::fast_fourier_transform::{
inverse_fast_fourier_transform,
};
pub use self::fast_power::fast_power;
pub use self::faster_perfect_numbers::generate_perfect_numbers;
pub use self::gaussian_elimination::gaussian_elimination;
pub use self::gcd_of_n_numbers::gcd;
pub use self::greatest_common_divisor::{
Expand All @@ -46,6 +49,7 @@ pub use self::linear_sieve::LinearSieve;
pub use self::matrix_ops::{
matrix_add, matrix_multiply, matrix_scalar_multiplication, matrix_subtract, matrix_transpose,
};
pub use self::mersenne_primes::{get_mersenne_primes, is_mersenne_prime};
pub use self::miller_rabin::miller_rabin;
pub use self::newton_raphson::find_root;
pub use self::nthprime::nthprime;
Expand Down