@@ -123,11 +123,11 @@ View the models found by auto-sklearn
123
123
124
124
rank ensemble_weight type cost duration
125
125
model_id
126
- 25 1 0.46 sgd 0.436679 0.782460
127
- 6 2 0.32 ard_regression 0.455042 0.800511
128
- 27 3 0.14 ard_regression 0.462249 0.788985
129
- 11 4 0.02 random_forest 0.507400 10.530246
130
- 7 5 0.06 gradient_boosting 0.518673 1.700823
126
+ 25 1 0.46 sgd 0.436679 0.680917
127
+ 6 2 0.32 ard_regression 0.455042 0.699064
128
+ 27 3 0.14 ard_regression 0.462249 0.680735
129
+ 11 4 0.02 random_forest 0.507400 10.409721
130
+ 7 5 0.06 gradient_boosting 0.518673 1.241716
131
131
132
132
133
133
@@ -155,58 +155,58 @@ Print the final ensemble constructed by auto-sklearn
155
155
.. code-block :: none
156
156
157
157
{ 6: { 'cost': 0.4550418898836528,
158
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8344014640 >,
158
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fdfafb4fdf0 >,
159
159
'ensemble_weight': 0.32,
160
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f834408d1f0 >,
160
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fdfb03f3850 >,
161
161
'model_id': 6,
162
162
'rank': 2,
163
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f834408dbe0 >,
163
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fdfb03f3250 >,
164
164
'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788, alpha_2=2.2118001735899097e-07,
165
165
copy_X=False, lambda_1=1.2037591637980971e-06,
166
166
lambda_2=4.358378124977852e-09,
167
167
threshold_lambda=1136.5286041327277, tol=0.021944240404849075)},
168
168
7: { 'cost': 0.5186726734789994,
169
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f833fc839d0 >,
169
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fdfac2ae520 >,
170
170
'ensemble_weight': 0.06,
171
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8344108970 >,
171
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fdfafd356d0 >,
172
172
'model_id': 7,
173
173
'rank': 5,
174
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f835733d940 >,
174
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fdfafd35400 >,
175
175
'sklearn_regressor': HistGradientBoostingRegressor(l2_regularization=1.8428972335335263e-10,
176
176
learning_rate=0.012607824914758717, max_iter=512,
177
177
max_leaf_nodes=10, min_samples_leaf=8,
178
178
n_iter_no_change=0, random_state=1,
179
179
validation_fraction=None, warm_start=True)},
180
180
11: { 'cost': 0.5073997164657239,
181
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f834416e8b0 >,
181
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fdfafab06d0 >,
182
182
'ensemble_weight': 0.02,
183
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f833fe9b7f0 >,
183
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fdfacd2aa00 >,
184
184
'model_id': 11,
185
185
'rank': 4,
186
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f833fe9b8e0 >,
186
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fdfacd2adf0 >,
187
187
'sklearn_regressor': RandomForestRegressor(bootstrap=False, criterion='mae',
188
188
max_features=0.6277363920171745, min_samples_leaf=6,
189
189
min_samples_split=15, n_estimators=512, n_jobs=1,
190
190
random_state=1, warm_start=True)},
191
191
25: { 'cost': 0.43667876507897496,
192
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f83440427f0 >,
192
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fdfacd21b20 >,
193
193
'ensemble_weight': 0.46,
194
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f834266e4c0 >,
194
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fdfacd21c70 >,
195
195
'model_id': 25,
196
196
'rank': 1,
197
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f834266e5e0 >,
197
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fdfacd218e0 >,
198
198
'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654, epsilon=0.012150149892783745,
199
199
eta0=0.016444224834275295, l1_ratio=1.7462342366289323e-09,
200
200
loss='epsilon_insensitive', max_iter=16, penalty='elasticnet',
201
201
power_t=0.21521743568582094, random_state=1,
202
202
tol=0.002431731981071206, warm_start=True)},
203
203
27: { 'cost': 0.4622486119001967,
204
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f83442101f0 >,
204
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fdfb07beca0 >,
205
205
'ensemble_weight': 0.14,
206
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f83426df640 >,
206
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fdfab184910 >,
207
207
'model_id': 27,
208
208
'rank': 3,
209
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f83426df0a0 >,
209
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fdfab1849d0 >,
210
210
'sklearn_regressor': ARDRegression(alpha_1=2.7664515192592053e-05, alpha_2=9.504988116581138e-07,
211
211
copy_X=False, lambda_1=6.50650698230178e-09,
212
212
lambda_2=4.238533890074848e-07,
@@ -290,7 +290,7 @@ the true value).
290
290
291
291
.. rst-class :: sphx-glr-timing
292
292
293
- **Total running time of the script: ** ( 2 minutes 1.625 seconds)
293
+ **Total running time of the script: ** ( 1 minutes 53.928 seconds)
294
294
295
295
296
296
.. _sphx_glr_download_examples_20_basic_example_regression.py :
0 commit comments