Skip to content

Commit d7d498f

Browse files
author
Github Actions
committed
Eddie Bergman: Testing: ignore kernal pca config error with sparse data (#1368)
1 parent 203b3bd commit d7d498f

File tree

65 files changed

+3250
-3786
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

65 files changed

+3250
-3786
lines changed
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading
Loading
Loading
Loading

development/_sources/examples/20_basic/example_classification.rst.txt

Lines changed: 148 additions & 259 deletions
Large diffs are not rendered by default.

development/_sources/examples/20_basic/example_multilabel_classification.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -155,7 +155,7 @@ View the models found by auto-sklearn
155155
156156
rank ensemble_weight type cost duration
157157
model_id
158-
2 1 1.0 random_forest 0.447294 3.615119
158+
2 1 1.0 random_forest 0.447294 4.406952
159159
160160
161161
@@ -183,11 +183,11 @@ Print the final ensemble constructed by auto-sklearn
183183
.. code-block:: none
184184
185185
{ 2: { 'balancing': Balancing(random_state=1),
186-
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fdfac2599a0>,
186+
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fa4ed5b9c70>,
187187
'cost': 0.4472941828699525,
188-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fdfaccdf070>,
188+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fa4f1f48eb0>,
189189
'ensemble_weight': 1.0,
190-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fdfac259250>,
190+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fa4ed5b9250>,
191191
'model_id': 2,
192192
'rank': 1,
193193
'sklearn_classifier': RandomForestClassifier(max_features=15, n_estimators=512, n_jobs=1,
@@ -264,7 +264,7 @@ Get the Score of the final ensemble
264264
265265
.. rst-class:: sphx-glr-timing
266266

267-
**Total running time of the script:** ( 0 minutes 34.280 seconds)
267+
**Total running time of the script:** ( 0 minutes 14.845 seconds)
268268

269269

270270
.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:

development/_sources/examples/20_basic/example_multioutput_regression.rst.txt

Lines changed: 52 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -123,9 +123,13 @@ View the models found by auto-sklearn
123123

124124
.. code-block:: none
125125
126-
rank ensemble_weight type cost duration
127-
model_id
128-
12 1 1.0 gaussian_process 0.000005 2.62024
126+
rank ensemble_weight type cost duration
127+
model_id
128+
24 1 0.72 extra_trees 0.112835 3.449075
129+
2 2 0.16 random_forest 0.166371 2.792659
130+
11 3 0.02 k_nearest_neighbors 0.242884 0.561164
131+
14 4 0.06 k_nearest_neighbors 0.501810 1.096981
132+
21 5 0.04 decision_tree 0.510766 0.625484
129133
130134
131135
@@ -152,17 +156,50 @@ Print the final ensemble constructed by auto-sklearn
152156

153157
.. code-block:: none
154158
155-
{ 12: { 'cost': 5.194507913142132e-06,
156-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fdfab0429a0>,
157-
'ensemble_weight': 1.0,
158-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fdfab042700>,
159-
'model_id': 12,
159+
{ 2: { 'cost': 0.16637090899710183,
160+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fa4f1e730a0>,
161+
'ensemble_weight': 0.16,
162+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fa4f03f3610>,
163+
'model_id': 2,
164+
'rank': 2,
165+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fa4f03f3700>,
166+
'sklearn_regressor': RandomForestRegressor(max_features=1.0, n_estimators=512, n_jobs=1,
167+
random_state=1, warm_start=True)},
168+
11: { 'cost': 0.24288428078315416,
169+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fa4ed32a970>,
170+
'ensemble_weight': 0.02,
171+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fa4f044f6a0>,
172+
'model_id': 11,
173+
'rank': 3,
174+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fa4f044f6d0>,
175+
'sklearn_regressor': KNeighborsRegressor(n_neighbors=3)},
176+
14: { 'cost': 0.5018102612386459,
177+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fa4f03fcdc0>,
178+
'ensemble_weight': 0.06,
179+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fa4f0402be0>,
180+
'model_id': 14,
181+
'rank': 4,
182+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fa4ed5b9370>,
183+
'sklearn_regressor': KNeighborsRegressor(n_neighbors=1, p=1, weights='distance')},
184+
21: { 'cost': 0.5107661594162471,
185+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fa4f0445490>,
186+
'ensemble_weight': 0.04,
187+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fa4f036afa0>,
188+
'model_id': 21,
189+
'rank': 5,
190+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fa4f036a370>,
191+
'sklearn_regressor': DecisionTreeRegressor(max_depth=10, min_samples_leaf=5, min_samples_split=3,
192+
random_state=1)},
193+
24: { 'cost': 0.11283470888386893,
194+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fa4ed7ebdf0>,
195+
'ensemble_weight': 0.72,
196+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fa4ed62dca0>,
197+
'model_id': 24,
160198
'rank': 1,
161-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fdfab042a00>,
162-
'sklearn_regressor': GaussianProcessRegressor(alpha=6.212085562385133e-06,
163-
kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
164-
n_restarts_optimizer=10, normalize_y=True,
165-
random_state=1)}}
199+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fa4ed62d4c0>,
200+
'sklearn_regressor': ExtraTreesRegressor(criterion='friedman_mse', max_features=0.8510680946985372,
201+
min_samples_leaf=16, min_samples_split=17, n_estimators=512,
202+
n_jobs=1, random_state=1, warm_start=True)}}
166203
167204
168205
@@ -190,7 +227,7 @@ Get the Score of the final ensemble
190227

191228
.. code-block:: none
192229
193-
R2 score: 0.9999981665106872
230+
R2 score: 0.8923982580681589
194231
195232
196233
@@ -413,7 +450,7 @@ Get the configuration space
413450
414451
.. rst-class:: sphx-glr-timing
415452

416-
**Total running time of the script:** ( 1 minutes 59.863 seconds)
453+
**Total running time of the script:** ( 1 minutes 54.380 seconds)
417454

418455

419456
.. _sphx_glr_download_examples_20_basic_example_multioutput_regression.py:

development/_sources/examples/20_basic/example_regression.rst.txt

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -123,11 +123,11 @@ View the models found by auto-sklearn
123123
124124
rank ensemble_weight type cost duration
125125
model_id
126-
25 1 0.46 sgd 0.436679 0.680917
127-
6 2 0.32 ard_regression 0.455042 0.699064
128-
27 3 0.14 ard_regression 0.462249 0.680735
129-
11 4 0.02 random_forest 0.507400 10.409721
130-
7 5 0.06 gradient_boosting 0.518673 1.241716
126+
25 1 0.46 sgd 0.436679 0.810855
127+
6 2 0.32 ard_regression 0.455042 0.869901
128+
27 3 0.14 ard_regression 0.462249 0.836544
129+
11 4 0.02 random_forest 0.507400 10.837491
130+
7 5 0.06 gradient_boosting 0.518673 1.607769
131131
132132
133133
@@ -155,58 +155,58 @@ Print the final ensemble constructed by auto-sklearn
155155
.. code-block:: none
156156
157157
{ 6: { 'cost': 0.4550418898836528,
158-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fdfafb4fdf0>,
158+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fa4f0402370>,
159159
'ensemble_weight': 0.32,
160-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fdfb03f3850>,
160+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fa4f220f6a0>,
161161
'model_id': 6,
162162
'rank': 2,
163-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fdfb03f3250>,
163+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fa4f1e9f460>,
164164
'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788, alpha_2=2.2118001735899097e-07,
165165
copy_X=False, lambda_1=1.2037591637980971e-06,
166166
lambda_2=4.358378124977852e-09,
167167
threshold_lambda=1136.5286041327277, tol=0.021944240404849075)},
168168
7: { 'cost': 0.5186726734789994,
169-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fdfac2ae520>,
169+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fa4f1bdb520>,
170170
'ensemble_weight': 0.06,
171-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fdfafd356d0>,
171+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fa4f1c2dc40>,
172172
'model_id': 7,
173173
'rank': 5,
174-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fdfafd35400>,
174+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fa4f1c2deb0>,
175175
'sklearn_regressor': HistGradientBoostingRegressor(l2_regularization=1.8428972335335263e-10,
176176
learning_rate=0.012607824914758717, max_iter=512,
177177
max_leaf_nodes=10, min_samples_leaf=8,
178178
n_iter_no_change=0, random_state=1,
179179
validation_fraction=None, warm_start=True)},
180180
11: { 'cost': 0.5073997164657239,
181-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fdfafab06d0>,
181+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fa4f1bfb1c0>,
182182
'ensemble_weight': 0.02,
183-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fdfacd2aa00>,
183+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fa4f1f21910>,
184184
'model_id': 11,
185185
'rank': 4,
186-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fdfacd2adf0>,
186+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fa4f1f21d60>,
187187
'sklearn_regressor': RandomForestRegressor(bootstrap=False, criterion='mae',
188188
max_features=0.6277363920171745, min_samples_leaf=6,
189189
min_samples_split=15, n_estimators=512, n_jobs=1,
190190
random_state=1, warm_start=True)},
191191
25: { 'cost': 0.43667876507897496,
192-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fdfacd21b20>,
192+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fa4f0402b20>,
193193
'ensemble_weight': 0.46,
194-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fdfacd21c70>,
194+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fa4f025a9d0>,
195195
'model_id': 25,
196196
'rank': 1,
197-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fdfacd218e0>,
197+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fa4f025abb0>,
198198
'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654, epsilon=0.012150149892783745,
199199
eta0=0.016444224834275295, l1_ratio=1.7462342366289323e-09,
200200
loss='epsilon_insensitive', max_iter=16, penalty='elasticnet',
201201
power_t=0.21521743568582094, random_state=1,
202202
tol=0.002431731981071206, warm_start=True)},
203203
27: { 'cost': 0.4622486119001967,
204-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fdfb07beca0>,
204+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fa504eae730>,
205205
'ensemble_weight': 0.14,
206-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fdfab184910>,
206+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fa4f0218f10>,
207207
'model_id': 27,
208208
'rank': 3,
209-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fdfab1849d0>,
209+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fa4f0218ca0>,
210210
'sklearn_regressor': ARDRegression(alpha_1=2.7664515192592053e-05, alpha_2=9.504988116581138e-07,
211211
copy_X=False, lambda_1=6.50650698230178e-09,
212212
lambda_2=4.238533890074848e-07,
@@ -290,7 +290,7 @@ the true value).
290290

291291
.. rst-class:: sphx-glr-timing
292292

293-
**Total running time of the script:** ( 1 minutes 53.928 seconds)
293+
**Total running time of the script:** ( 1 minutes 58.345 seconds)
294294

295295

296296
.. _sphx_glr_download_examples_20_basic_example_regression.py:

development/_sources/examples/20_basic/sg_execution_times.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -5,14 +5,14 @@
55

66
Computation times
77
=================
8-
**06:30.491** total execution time for **examples_20_basic** files:
8+
**06:08.007** total execution time for **examples_20_basic** files:
99

1010
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
11-
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 02:02.421 | 0.0 MB |
11+
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 02:00.438 | 0.0 MB |
1212
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
13-
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 01:59.863 | 0.0 MB |
13+
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:58.345 | 0.0 MB |
1414
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
15-
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:53.928 | 0.0 MB |
15+
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 01:54.380 | 0.0 MB |
1616
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
17-
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:34.280 | 0.0 MB |
17+
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:14.845 | 0.0 MB |
1818
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+

0 commit comments

Comments
 (0)