Skip to content

Adding support for DataProcessing to SageMaker TransformJob #52

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 10 additions & 4 deletions src/stepfunctions/steps/sagemaker.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,7 @@ class TransformStep(Task):
Creates a Task State to execute a `SageMaker Transform Job <https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html>`_.
"""

def __init__(self, state_id, transformer, job_name, model_name, data, data_type='S3Prefix', content_type=None, compression_type=None, split_type=None, experiment_config=None, wait_for_completion=True, tags=None, **kwargs):
def __init__(self, state_id, transformer, job_name, model_name, data, data_type='S3Prefix', content_type=None, compression_type=None, split_type=None, experiment_config=None, wait_for_completion=True, tags=None, input_filter=None, output_filter=None, join_source=None, **kwargs):
"""
Args:
state_id (str): State name whose length **must be** less than or equal to 128 unicode characters. State names **must be** unique within the scope of the whole state machine.
Expand Down Expand Up @@ -150,7 +150,10 @@ def __init__(self, state_id, transformer, job_name, model_name, data, data_type=
content_type=content_type,
compression_type=compression_type,
split_type=split_type,
job_name=job_name
job_name=job_name,
input_filter=input_filter,
join_source=join_source,
output_filter=output_filter
)
else:
parameters = transform_config(
Expand All @@ -159,7 +162,10 @@ def __init__(self, state_id, transformer, job_name, model_name, data, data_type=
data_type=data_type,
content_type=content_type,
compression_type=compression_type,
split_type=split_type
split_type=split_type,
input_filter=input_filter,
join_source=join_source,
output_filter=output_filter
)

if isinstance(job_name, (ExecutionInput, StepInput)):
Expand Down Expand Up @@ -253,7 +259,7 @@ def __init__(self, state_id, endpoint_config_name, model_name, initial_instance_

if isinstance(data_capture_config, DataCaptureConfig):
parameters['DataCaptureConfig'] = data_capture_config._to_request_dict()

if tags:
parameters['Tags'] = tags_dict_to_kv_list(tags)

Expand Down
51 changes: 51 additions & 0 deletions tests/unit/test_sagemaker_steps.py
Original file line number Diff line number Diff line change
Expand Up @@ -422,6 +422,57 @@ def test_transform_step_creation(pca_transformer):
'End': True
}

step_with_optional_fields = TransformStep('Inference',
transformer=pca_transformer,
data='s3://sagemaker/inference',
job_name='transform-job',
model_name='pca-model',
experiment_config={
'ExperimentName': 'pca_experiment',
'TrialName': 'pca_trial',
'TrialComponentDisplayName': 'Transform'
},
tags=DEFAULT_TAGS,
join_source='Input',
output_filter='$[2:]',
input_filter='$[1:]'
)
assert step_with_optional_fields.to_dict() == {
'Type': 'Task',
'Parameters': {
'ModelName': 'pca-model',
'TransformInput': {
'DataSource': {
'S3DataSource': {
'S3DataType': 'S3Prefix',
'S3Uri': 's3://sagemaker/inference'
}
}
},
'TransformOutput': {
'S3OutputPath': 's3://sagemaker/transform-output'
},
'TransformJobName': 'transform-job',
'TransformResources': {
'InstanceCount': 1,
'InstanceType': 'ml.c4.xlarge'
},
'DataProcessing': {
'InputFilter': '$[1:]',
'OutputFilter': '$[2:]',
'JoinSource': 'Input',
},
'ExperimentConfig': {
'ExperimentName': 'pca_experiment',
'TrialName': 'pca_trial',
'TrialComponentDisplayName': 'Transform'
},
'Tags': DEFAULT_TAGS_LIST
},
'Resource': 'arn:aws:states:::sagemaker:createTransformJob.sync',
'End': True
}

@patch('botocore.client.BaseClient._make_api_call', new=mock_boto_api_call)
def test_get_expected_model(pca_estimator):
training_step = TrainingStep('Training', estimator=pca_estimator, job_name='TrainingJob')
Expand Down