Skip to content

TST: refactor test_utils #145

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Feb 20, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 150 additions & 0 deletions tests/test_helpers.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
from types import ModuleType

import numpy as np
import pytest

from array_api_extra._lib import Backend
from array_api_extra._lib._testing import xp_assert_equal
from array_api_extra._lib._utils._compat import device as get_device
from array_api_extra._lib._utils._helpers import asarrays, in1d
from array_api_extra._lib._utils._typing import Device
from array_api_extra.testing import lazy_xp_function

# mypy: disable-error-code=no-untyped-usage

# FIXME calls xp.unique_values without size
lazy_xp_function(in1d, jax_jit=False, static_argnames=("assume_unique", "invert", "xp"))


class TestIn1D:
@pytest.mark.xfail_xp_backend(
Backend.SPARSE, reason="no unique_inverse, no device kwarg in asarray()"
)
# cover both code paths
@pytest.mark.parametrize(
"n",
[
pytest.param(9, id="fast path"),
pytest.param(
15,
id="slow path",
marks=pytest.mark.xfail_xp_backend(
Backend.DASK, reason="NaN-shaped array"
),
),
],
)
def test_no_invert_assume_unique(self, xp: ModuleType, n: int):
x1 = xp.asarray([3, 8, 20])
x2 = xp.arange(n)
expected = xp.asarray([True, True, False])
actual = in1d(x1, x2)
xp_assert_equal(actual, expected)

@pytest.mark.xfail_xp_backend(Backend.SPARSE, reason="no device kwarg in asarray")
def test_device(self, xp: ModuleType, device: Device):
x1 = xp.asarray([3, 8, 20], device=device)
x2 = xp.asarray([2, 3, 4], device=device)
assert get_device(in1d(x1, x2)) == device

@pytest.mark.skip_xp_backend(Backend.NUMPY_READONLY, reason="xp=xp")
@pytest.mark.xfail_xp_backend(
Backend.SPARSE, reason="no arange, no device kwarg in asarray"
)
def test_xp(self, xp: ModuleType):
x1 = xp.asarray([1, 6])
x2 = xp.arange(5)
expected = xp.asarray([True, False])
actual = in1d(x1, x2, xp=xp)
xp_assert_equal(actual, expected)


class TestAsArrays:
@pytest.mark.xfail_xp_backend(Backend.SPARSE, reason="no isdtype")
@pytest.mark.parametrize(
("dtype", "b", "defined"),
[
# Well-defined cases of dtype promotion from Python scalar to Array
# bool vs. bool
("bool", True, True),
# int vs. xp.*int*, xp.float*, xp.complex*
("int16", 1, True),
("uint8", 1, True),
("float32", 1, True),
("float64", 1, True),
("complex64", 1, True),
("complex128", 1, True),
# float vs. xp.float, xp.complex
("float32", 1.0, True),
("float64", 1.0, True),
("complex64", 1.0, True),
("complex128", 1.0, True),
# complex vs. xp.complex
("complex64", 1.0j, True),
("complex128", 1.0j, True),
# Undefined cases
("bool", 1, False),
("int64", 1.0, False),
("float64", 1.0j, False),
],
)
def test_array_vs_scalar(
self, dtype: str, b: int | float | complex, defined: bool, xp: ModuleType
):
a = xp.asarray(1, dtype=getattr(xp, dtype))

xa, xb = asarrays(a, b, xp)
assert xa.dtype == a.dtype
if defined:
assert xb.dtype == a.dtype
else:
assert xb.dtype == xp.asarray(b).dtype

xbr, xar = asarrays(b, a, xp)
assert xar.dtype == xa.dtype
assert xbr.dtype == xb.dtype

def test_scalar_vs_scalar(self, xp: ModuleType):
a, b = asarrays(1, 2.2, xp=xp)
assert a.dtype == xp.asarray(1).dtype # Default dtype
assert b.dtype == xp.asarray(2.2).dtype # Default dtype; not broadcasted

ALL_TYPES: tuple[str, ...] = (
"int8",
"int16",
"int32",
"int64",
"uint8",
"uint16",
"uint32",
"uint64",
"float32",
"float64",
"complex64",
"complex128",
"bool",
)

@pytest.mark.parametrize("a_type", ALL_TYPES)
@pytest.mark.parametrize("b_type", ALL_TYPES)
def test_array_vs_array(self, a_type: str, b_type: str, xp: ModuleType):
"""
Test that when both inputs of asarray are already Array API objects,
they are returned unchanged.
"""
a = xp.asarray(1, dtype=getattr(xp, a_type))
b = xp.asarray(1, dtype=getattr(xp, b_type))
xa, xb = asarrays(a, b, xp)
assert xa.dtype == a.dtype
assert xb.dtype == b.dtype

@pytest.mark.parametrize("dtype", [np.float64, np.complex128])
def test_numpy_generics(self, dtype: type):
"""
Test special case of np.float64 and np.complex128,
which are subclasses of float and complex.
"""
a = dtype(0)
xa, xb = asarrays(a, 0, xp=np)
assert xa.dtype == dtype
assert xb.dtype == dtype
153 changes: 0 additions & 153 deletions tests/test_utils.py

This file was deleted.