Skip to content

Add complex number support to linalg.vector_norm #550

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 13, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions spec/API_specification/array_api/linalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -500,7 +500,7 @@ def vector_norm(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = No
Parameters
----------
x: array
input array. Should have a real-valued floating-point data type.
input array. Should have a floating-point data type.
axis: Optional[Union[int, Tuple[int, ...]]]
If an integer, ``axis`` specifies the axis (dimension) along which to compute vector norms. If an n-tuple, ``axis`` specifies the axes (dimensions) along which to compute batched vector norms. If ``None``, the vector norm must be computed over all array values (i.e., equivalent to computing the vector norm of a flattened array). Negative indices must be supported. Default: ``None``.
keepdims: bool
Expand Down Expand Up @@ -541,7 +541,7 @@ def vector_norm(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = No
Returns
-------
out: array
an array containing the vector norms. If ``axis`` is ``None``, the returned array must be a zero-dimensional array containing a vector norm. If ``axis`` is a scalar value (``int`` or ``float``), the returned array must have a rank which is one less than the rank of ``x``. If ``axis`` is a ``n``-tuple, the returned array must have a rank which is ``n`` less than the rank of ``x``. The returned array must have a real-valued floating-point data type determined by :ref:`type-promotion`.
an array containing the vector norms. If ``axis`` is ``None``, the returned array must be a zero-dimensional array containing a vector norm. If ``axis`` is a scalar value (``int`` or ``float``), the returned array must have a rank which is one less than the rank of ``x``. If ``axis`` is a ``n``-tuple, the returned array must have a rank which is ``n`` less than the rank of ``x``. If ``x`` has a real-valued data type, the returned array must have a real-valued floating-point data type determined by :ref:`type-promotion`. If ``x`` has a complex-valued data type, the returned array must have a real-valued floating-point data type whose precision matches the precision of ``x`` (e.g., if ``x`` is ``complex128``, then the returned array must have a ``float64`` data type).
"""

__all__ = ['cholesky', 'cross', 'det', 'diagonal', 'eigh', 'eigvalsh', 'inv', 'matmul', 'matrix_norm', 'matrix_power', 'matrix_rank', 'matrix_transpose', 'outer', 'pinv', 'qr', 'slogdet', 'solve', 'svd', 'svdvals', 'tensordot', 'trace', 'vecdot', 'vector_norm']